• 제목/요약/키워드: Micro Etching

검색결과 423건 처리시간 0.029초

레이저습식각을 이용한 용융실리카의 미세구멍가공 (Micro-drilling of Fused Silica by Laser Induced Wet Etching)

  • 백병선;이종길;전병희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1344-1348
    • /
    • 2003
  • It is generally known to be difficult to etch a surface of a transparent material such as fused silica by conventional laser ablation in which the surface is simply irradiated with a laser beam. A lot of studies have been done to provide a method capable of efficiently etching transparent materials without defects such as cracks. One of the promising methods or the micro-machining of optically transparent materials is laser induced etching. In this study, micro-drilling of fused silica by laser induced wet etching was conducted. KrF excimer and YAG laser were used as light sources. Acetone solution pyrene and ethanol solution of rhodamine were used as etchant.

  • PDF

고세장비 미세채널 기반의 마이크로 히트파이프 설계 및 제조 (Design and Fabrication of a Micro-Heat Pipe with High-Aspect-Ratio Microchannels)

  • 오광환;이민규;정성호
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.164-173
    • /
    • 2006
  • The cooling capacity of a micro-heat pipe is mainly governed by the magnitude of capillary pressure induced in the wick structure. For microchannel wicks, a higher capillary pressure is achievable for narrower and deeper channels. In this study, a metallic micro-heat pipe adopting high-aspect-ratio microchannel wicks is fabricated. Micromachining of high-aspect-ratio microchannels is done using the laser-induced wet etching technique in which a focused laser beam irradiates the workpiece placed in a liquid etchant along a desired channel pattern. Because of the direct writing characteristic of the laser-induced wet etching method, no mask is necessary and the fabrication procedure is relatively simple. Deep microchannels of an aspect ratio close to 10 can be readily fabricated with little heat damage of the workpiece. The laser-induced wet etching process for the fabrication of high-aspect-ratio microchannels in 0.5mm thick stainless steel foil is presented in detail. The shape and size variations of microchannels with respect to the process variables, such as laser power, scanning speed, number of scans, and etchant concentration are closely examined. Also, the fabrication of a flat micro-heat pipe based on the high-aspect-ratio microchannels is demonstrated.

감광성 결정화유리를 이용한 미세 구조물 제조에 대한 연구 (The Fabrication of Micro-framework Using Photosensitive Glass-ceramics)

  • 김형준;이상훈;연석주;최성철
    • 한국세라믹학회지
    • /
    • 제37권1호
    • /
    • pp.82-89
    • /
    • 2000
  • In lithium silicate photosensitive glass-ceramics, the relationship between lithography time and crystallization, and the effect of addition of mineral acid in etching rate and pattern shape were investigated. Irradiation times for micropatterning were less than 5 minutes in which Ce3+ ions in glass were changed rapidly to Ce4+ with ultra violet light. Overexposure to ultra brought about blot of pattern by diffiraction of light. Addition of mineral acid to HF enhanced etching rate as compared with HF solution only. The addition of H2SO4 especially increased the etching rate by 70%. But the mixed solution also increased the etching rate of the noncrystallized portion of the glass and this resulted in heavy etching. Etching with ultrasonic wave showed higher etching rate than that with the static or fluid method.

  • PDF

Photo lithography을 이용한 플라즈마 에칭 가공특성에 관한 연구 (A study on processing characteristics of plasma etching using photo lithography)

  • 백승엽
    • Design & Manufacturing
    • /
    • 제12권1호
    • /
    • pp.47-51
    • /
    • 2018
  • As the IT industry rapidly progresses, the functions of electronic devices and display devices are integrated with high density, and the model is changed in a short period of time. To implement the integration technology, a uniform micro-pattern implementation technique to drive and control the product is required. The most important technology for the micro pattern generation is the exposure processing technology. Failure to implement the basic pattern in this process cannot satisfy the demands in the manufacturing field. In addition, the conventional exposure method of the mask method cannot cope with the small-scale production of various types of products, and it is not possible to implement a micro-pattern, so an alternative technology must be secured. In this study, the technology to implement the required micro-pattern in semiconductor processing is presented through the photolithography process and plasma etching.

초미세 구리 박판의 마이크로 채널 성형 (Micro channel forming of ultra thin copper foil)

  • 주병윤;임성한;오수익;백승욱
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.49-53
    • /
    • 2005
  • The objective of this research was to establish the size limitation of micro metal forming and analyze the formability of foil. Flat-rolled ultra thin metallic copper foil($3{\mu}m$ in thickness) was used as a forming material and foil was annealed to improve the formability at the temperature of $385^{\circ}C$. Forming die was fabricated by using etching technique of DRIE(deep reactive ion etching) and HNA isotropic etching. For the forming die and coupe. foil were vacuum packed and the forming was conducted as applying hydrostatic pressure of 250MPa to the vacuum packed unit. We successfully obtained the micro channels of $12\~14{\mu}m$ width and $9{\mu}m$ depth from micro forming process we designed. We also investigated the thickness strain distribution of foil from experiment and FE simulation result. Micro channels had a good formability of smooth surface and size accuracy. We expect that micro metal forming technology will be applied to production of micro parts.

  • PDF

식각액에 따른 용융실리카의 레이저 습식 식각가공 (Laser Induced Wet Etching of Fused Silica according to Etchant)

  • 이종호;이종길;전병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.245-249
    • /
    • 2004
  • Transparent materials such as fused silica are important materials in optical and optoelectronics field because of its outstanding properties, such as transparency in a wide wavelength range, strong damage resistance for laser irradiation, and high thermal and chemical stability. However, these properties make it difficult to micromachine silica in micro-sized quantities. In this study, we fabricated a micro patterns on the surface of fused silica plate using laser induced wet etching. KrF excimer laser was used as a light source. There were no burrs and micro cracks on the etched surface of fused silica and the flatness of the etched surface was fairly good. We investigated the influence of etchant upon the etch rate and quality in laser induced wet etching. Pyrene-acetone, toluene, and pyrene-toluene solution were used as etchant. In the side of etch rate, toluene and pyrene-toluene solution were better than pyrene-acetone solution.

  • PDF

MEMS 공정에 적용하기 위한 마이크로 블라스터 식각 특성 (Etching Characteristics of Micro Blaster for MEMS Applications)

  • 조찬섭;배익순;이종현
    • 센서학회지
    • /
    • 제20권3호
    • /
    • pp.187-192
    • /
    • 2011
  • Abrasive blaster is similar to sand blaster, and effectively removes hard and brittle materials. Exiting abrasive blaster has applied to rough working such as deburring and rough finishing. As the need for machining of ceramics, semiconductor, electronic devices and LCD are increasing, micro abrasive blaster was developed, and became the inevitable technique to micromachining. This paper describes the performance of the micro blaster in MEMS process of glass and succeed in domestically producing complete micro blaster. Diameter of hole and width of line in this etching is 100 ${\mu}m$ ~ 1000 ${\mu}m$. Experimental results showed good performance in micro channel and hole in glass wafer. Therefore, this micro blaster could be effectively applied to the micro machining of semiconductor, micro PCR chip.

습식 화학적 식각 방법에 의한 시간에 따른 GaAs(100) 단결정 웨이퍼에서의 마이크로 구멍의 제작 및 분석 (Fabrication and Time-Dependent Analysis of Micro-Hole in GaAs(100) Single Crystal Wafer Using Wet Chemical Etching Method)

  • 이하영;곽민섭;임경원;안형수;이삼녕
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.155-159
    • /
    • 2019
  • Surface plasmon resonance is the resonant oscillation of conduction electrons at the interface between negative and positive permittivity material stimulated by incident light. In particular, when light transmits through the metallic microhole structures, it shows an increased intensity of light. Thus, it is used to increase the efficiency of devices such as LEDs, solar cells, and sensors. There are various methods to make micro-hole structures. In this experiment, micro holes are formed using a wet chemical etching method, which is inexpensive and can be mass processed. The shape of the holes depends on crystal facets, temperature, the concentration of the etchant solution, and etching time. We select a GaAs(100) single crystal wafer in this experiment and satisfactory results are obtained under the ratio of etchant solution with $H_2SO_4:H_2O_2:H_2O=1:5:5$. The morphology of micro holes according to the temperature and time is observed using field emission - scanning electron microscopy (FE-SEM). The etching mechanism at the corners and sidewalls is explained through the configuration of atoms.