DOI QR코드

DOI QR Code

Fabrication and Time-Dependent Analysis of Micro-Hole in GaAs(100) Single Crystal Wafer Using Wet Chemical Etching Method

습식 화학적 식각 방법에 의한 시간에 따른 GaAs(100) 단결정 웨이퍼에서의 마이크로 구멍의 제작 및 분석

  • Lee, Ha Young (Department of Electronic Materials Engineering, Korea Maritime and Ocean University) ;
  • Kwak, Min Sub (Department of Electronic Materials Engineering, Korea Maritime and Ocean University) ;
  • Lim, Kyung-Won (Department of Electronic Materials Engineering, Korea Maritime and Ocean University) ;
  • Ahn, Hyung Soo (Department of Electronic Materials Engineering, Korea Maritime and Ocean University) ;
  • Yi, Sam Nyung (Department of Electronic Materials Engineering, Korea Maritime and Ocean University)
  • 이하영 (한국해양대학교 전자소재공학과) ;
  • 곽민섭 (한국해양대학교 전자소재공학과) ;
  • 임경원 (한국해양대학교 전자소재공학과) ;
  • 안형수 (한국해양대학교 전자소재공학과) ;
  • 이삼녕 (한국해양대학교 전자소재공학과)
  • Received : 2018.12.07
  • Accepted : 2019.01.08
  • Published : 2019.03.27

Abstract

Surface plasmon resonance is the resonant oscillation of conduction electrons at the interface between negative and positive permittivity material stimulated by incident light. In particular, when light transmits through the metallic microhole structures, it shows an increased intensity of light. Thus, it is used to increase the efficiency of devices such as LEDs, solar cells, and sensors. There are various methods to make micro-hole structures. In this experiment, micro holes are formed using a wet chemical etching method, which is inexpensive and can be mass processed. The shape of the holes depends on crystal facets, temperature, the concentration of the etchant solution, and etching time. We select a GaAs(100) single crystal wafer in this experiment and satisfactory results are obtained under the ratio of etchant solution with $H_2SO_4:H_2O_2:H_2O=1:5:5$. The morphology of micro holes according to the temperature and time is observed using field emission - scanning electron microscopy (FE-SEM). The etching mechanism at the corners and sidewalls is explained through the configuration of atoms.

Keywords

References

  1. E. Menard, M. A. Meitl, Y. Sun, J. Park, D. J. Shir, Y. Nam, S. Jeon and J. A. Rogers, Chem. Rev., 107, 1117 (2007). https://doi.org/10.1021/cr050139y
  2. D. L. Wilson, R. Martin, S. Hong, M. C. Golomb, C. A. Mirkin and D. L. Kaplan, PNAS, 98, 13660 (2001). https://doi.org/10.1073/pnas.241323198
  3. D. Choi, H. K. Yu, S. G. Jang and S. Yang, J. Am. Chem. Soc., 126, 7019 (2004). https://doi.org/10.1021/ja0319083
  4. O. Fenwick, L. Bozec, D. Credgington, A. Hammiche, G. M. Lazzerini, Y. R. Silberg and F. Cacialli, Nat. Nanotechnol., 4, 664 (2009). https://doi.org/10.1038/nnano.2009.254
  5. F. Withers, T. H. Bointon, M. Dubois, S. Russo and M. F. Craciun, Nano Lett., 11, 3912 (2011). https://doi.org/10.1021/nl2020697
  6. Y. Lu and S. C. Chen, Nanotechnology, 14, 505 (2003). https://doi.org/10.1088/0957-4484/14/5/305
  7. Y. Bahk, B. J. Kang, Y. S. Kim, J. Kim, W. T. Kim, T. Y. Kim, T. Kang, J. Rhie, S. Han, C. -H. Park, F. Rotermund and D. -S. Kim, Phys. Rev. Lett., 115, 125501 (2015). https://doi.org/10.1103/PhysRevLett.115.125501
  8. M. Najiminaini, F. Vasefi, B. Kaminska and J. J. L. Carson, Appl. Phys. Lett., 100, 043105 (2012). https://doi.org/10.1063/1.3679173
  9. C. Genet and T. W. Ebbesen, Nature, 445, 39 (2007). https://doi.org/10.1038/nature05350
  10. A. Lesuffleur, H. Im, N. C. Lindquist and S. Oh, Appl. Phys. Lett., 90, 243110 (2007). https://doi.org/10.1063/1.2747668
  11. J. Parsons, E. Hendry, C. P. Burrows, B. Auquie, J. R. Sambles and W. L. Barnes, Phys. Rev. B, 79, 073412 (2009). https://doi.org/10.1103/PhysRevB.79.073412
  12. T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner and A. B. Dahlin, Small, 7, 1653 (2011). https://doi.org/10.1002/smll.201002228
  13. K. Nakayama, K. Tanabe and H. A. Atwater, Appl. Phys. Lett., 93, 121904 (2008). https://doi.org/10.1063/1.2988288
  14. S. Iida, T. Sugimoto, S. Suzuki, S. Kishimoto and Y. Yagi, J. Cryst. Growth, 72, 51 (1985). https://doi.org/10.1016/0022-0248(85)90117-4
  15. K. Gamo, Y. Ochiai and S. Namba, Jpn. J. Appl. Phys., 21, L792 (1982). https://doi.org/10.1143/JJAP.21.L792
  16. Y. Ochiai, K. Gamo and S. Namba, J. Vac. Sci. Technol., B, 3, 67 (1985).
  17. K. P. Hilton and J. Woodward, Electron. Lett., 21, 962 (1985). https://doi.org/10.1049/el:19850679
  18. R. J. Young, J. R. A. Cleaver and H. Ahmed, J. Vac. Sci. Technol. B, 11, 234 (1993). https://doi.org/10.1116/1.586708
  19. Y. Sugimoto, M. Taneya, H. Hidaka and K. Akita, J. Appl. Phys., 68, 2392 (1990). https://doi.org/10.1063/1.346497
  20. E. Miyauchi, H. Arimoto, H. Hashimoto and T. Utsumi, J. Vac. Sci. Technol., B, 1, 1113 (1983). https://doi.org/10.1116/1.582645
  21. R. Cheung, S. Thoms, S. P. Beamont, G. Doughty, V. Law and C. D. W. Wilkinson, Electron. Lett., 23, 857 (1987). https://doi.org/10.1049/el:19870606
  22. J. L. Vossen and W. Kern, Thin film processes, p.403, J. L. Vossen, Academic press, London (1978).
  23. J. S. Kim, Master Thesis (in Korean), p. 1-4, Korea Maritime and Ocean University, Busan (2004).
  24. S. M. Sze, Physics of Semiconductor Devices, John Wiley, New York (2012).
  25. H. Y. Lee, Master Thesis (in Korean), p. 59-60, Korea Maritime and Ocean University, Busan (2018).