• Title/Summary/Keyword: MgB2

Search Result 4,779, Processing Time 0.035 seconds

Fabrication of $MgB_2$ tape with metal powder addition (금속분말이 첨가된 $MgB_2$ 선재의 제조 및 특성)

  • Ko, Jae-Woong;Yoo, Jai-Moo;Kim, Young-Kuk;Chung, Kook-Chae;Yoo, Sang-Im;Wang, Xio Lin;Dou, Shi Xue
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • The $MgB_2$ tapes with several metal powder addition were fabricated by PIT method with or without heat treatment. The $J_c$ value of $5.600A/cm^2$ and $16.000A/cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol % of Cu added $MgB_2$ tape without heat treatment respectively. The $J_c$ value of $8.000A/cm^2$ and $35,000A/cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol. % of Al added $MgB_2$ tape with heat treatment, respectively. The $J_c-B$ curve shows enhancement in $J_c$ under magnetic field. which suggests enhancement in workability and grain connectivity with several metal powder addition.

Magnetic properties of $MgB_2$ and FeTi composites (Mg$B_2$와 FeTi 합성체의 자기적 성질)

  • 이헌봉;이준호;김영철;정대영
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.109-113
    • /
    • 2004
  • MgB$_2$ and FeTi composites was prepared to study the effect of FeTi particles on superconductivity of MgB$_2$. The sample, which had contained magnesium, boron and FeTi particles, was synthesized by the Commercial Stainless Steel Tube Enveloping Technique(COSSET) at 92$0^{\circ}C$ for 2 hours. The structure and properties of the sample was investigated by XRD, SEM, and SQUID magnetometer. It was found that there was a little change of T$_{c}$ compared with pure MgB$_2$ superconductor in spite of high percentage of FeTi particles, and there was no proof of structure change of MgB$_2$ superconductor due to FeTi particles. But the high porosity which was appeared in the pure MgB$_2$ was disappeared in the composites. We conclude that FeTi particles do not influence the superconductivity of MgB$_2$ and it is expected that fe-Ti material system will be a good material for a tube of the PIT process and for a substrate of the film.m.

  • PDF

Effects of a compaction method for powder compacts on the critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Choo, K.N.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.40-44
    • /
    • 2019
  • In this study, the effects of the compaction method for (Mg+2B) powders on the apparent density and superconducting properties of $MgB_2$ bulk superconductor were investigated. The raw powders used in this study were nano-sized boron (B) and spherical magnesium (Mg). A batch of a powder mixture of (Mg+2B) was put in a steel mold and uniaxially pressed at 1 ton or 3 tons into pellets. Another batch of the powder mixture was uniaxially pressed at 1 ton and then pressed isostatically at $1800kg/cm^2$ in the water chamber. All pellets were heat-treated at $650^{\circ}C$ for 1 h in flowing argon gas for the formation of $MgB_2$. The apparent density of powder compacts pressed at 3 ton was higher than that at 1 ton. The cold isostatic pressing (CIP) in a water chamber allowed further increase of the apparent density of powder compacts, which influenced the pellet density of the final products ($MgB_2$). The compaction methods (uniaxial pressing and CIP) did not affect the formation of $MgB_2$ and superconducting critical temperature ($T_c$) of $MgB_2$, but affected the critical current density ($J_c$) of $MgB_2$ significantly. The sample with the high apparent density showed high $J_c$ at 5 K and 20 K at applied magnetic fields (0-5 T).

Commercial MgB2 superconducting wires at Sam Dong

  • Lee, Dong Gun;Choi, Jun Hyuk;Kim, Du Na;Jeon, Ju Heum;Maeda, Minoru;Choi, Seyong;Kim, Jung Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.26-31
    • /
    • 2020
  • Since 2014, Sam Dong Co., Ltd. has successfully developed high-performance MgB2 superconducting wires with a kilometer-scale. Herein, we studied performances of various MgB2 wires fabricated by the Sam Dong with different Cu fractions and diameters for practical applications. Critical current densities of our commercial wire, 18+'1'Cu multifilamentary MgB2 wire, are estimated to be 270,000 A/㎠ at 3 T and 4.2 K and 100,000 A/㎠ at 2 T and 20 K, respectively. We further discuss research progress of various MgB2 superconducting wires at Sam Dong Co., Ltd and make an effort to align with customers' requirements.

저가 준결정질 붕소 분말의 밀링 및 탄소 도핑 처리에 따른 $MgB_2$ 초전도 임계전류밀도의 향상

  • Jeon, Byeong-Hyeok;Kim, Chan-Jung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.32.1-32.1
    • /
    • 2011
  • 39 K의 임계온도를 갖는 $MgB_2$ 초전도체를 이용한 전력에너지와 MRI 의료 기기로의 응용 가능성이 높아지고 있다. $MgB_2$ 초전도체 제조에 있어서 마그네슘과 반응성이 좋은 비정질의 붕소 원료 분말 가격이 비싼 반면 상대적으로 경제적인 결정질 분말의 기계적 밀링 공정을 이용하여 비정질화와 나노 입자로의 크기 감소 효과를 얻을 수 있다. 또한 탄소를 이용한 붕소 치환으로부터 고 자기장하에서 초전도 임계 성질을 향상시키고자 유, 무기물 형태의 여러 가지 탄소 소스를 개발하는 연구가 진행되어 왔다. 본 연구에서는 저가의 95~97% 순도, 약 1 ${\mu}m$ 이하 크기를 갖는 준결정상의 붕소 분말을 이용하여 기계적 밀링에 따른 붕소 분말의 비정질화 및 입자 나노화, $MgB_2$ 반응성 향상, $MgB_2$ 결정립 크기 감소 및 결정립계 피닝 증가에 의한 초전도 임계 물성 향상에 대하여 알아보았다. 또한 여러 시간 동안 밀링된 각 붕소 분말에 액체 글리세린을 이용한 탄소 도핑 전처리를 통하여 밀링 시간의 최적화를 알아보았고 이로부터 제조된 $MgB_2$ 초전도 벌크의 경우 적절한 임계온도 감소, 격자 왜곡 결함과 높은 결정립계 밀도 등에 의한 플럭스 피닝 향상으로 $MgB_2$ 초전도체의 임계전류밀도 및 비가역자기장이 증가함을 알 수 있었다. 즉, 경제성 있는 저급의 준결정상을 갖는 붕소 원료 분말의 입자 비정질 나노화 및 탄소 도핑 전처리를 통하여 $MgB_2$ 초전도 임계 물성을 향상시킬 수 있었다.

  • PDF

Fabrication and superconducting property of $MgB_2$ tape with Al metal powder addition

  • Ko, Jae-Woong;Yoo, Jai-Moo;Chung, Kuk-Chae;Kim, Young-Kuk;Wang, Xiaolin;Dou, Shi Xue;Yoo, Sang-Im;Chung, Woo-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.15-18
    • /
    • 2007
  • The sub micron sized spherical $MgB_2$ powders were synthesized by spray reaction method. $MgB_2$ tapes with Al addition were fabricated by Powder in Tube (PIT) method. The superconducting property and microstructure of Al doped $MgB_2$ tapes were characterized by X-ray diffraction, optical microscopy and transport measurement under magnetic field. The $J_c$ value of $MgB_2$ tapes was increased with 10 vol. % Al addition. The $J_c$ value of 5,500 A/$cm^2$ and 11,000 A/$cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol. % of Al added $MgB_2$ tape without heat treatment, respectively. The $J_c$ value of 8,000 A/$cm^2$ and 33,000 A/$cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol. % of Al added $MgB_2$ tape with heat treatment, respectively. The $J_c$-B curves show enhancement in $J_c$ (B), which suggests that the microstructure and transport properties of $MgB_2$ tapes have been improved with Al addition.

Fabrication of $MgB_2$ Sheet by Powder Rolling Method (분말압연 공정에 의한 $MgB_2$ 판재 제조)

  • Chung, K.C.;Jeong, T.J.;Kim, T.H.;Ahn, S.T.;Park, Y.S.;Kim, D.H.;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.88-92
    • /
    • 2011
  • [ $MgB_2$ ]superconducting sheets have been fabricated using powder roll compaction method. Sheet-type $MgB_2$ bulk samples were successfully fabricated using the pre-reacted $MgB_2$ powders. In this work, $MgB_2$ powders were compacted by two rotating rolls and squeezed out as a form of $MgB_2$ sheets of ~1 mm thickness. The rolling speed of 0.3-0.7 rpm and the gap distance of 0.3-0.8 mm between the two rollers were carefully controlled to get a full compaction of the powders into bulk $MgB_2$ sheets. The densities of $MgB_2$ sheets were 1.98-2.05 g/$cm^3$, which is 75.44-77.99 % of the theoretical value of 2.63 g/$cm^3$. And the density comparison was made compared to those of typical $MgB_2$ bulks from uni-axial pressing and $MgB_2$ wires from Powder-In-Tube processing.

Influence of Magnesium Powder and Heat Treatment on the Superconducting Properties of $MgB_2/Fe$ Wires ($MgB_2/Fe$ 선재의 초전도성에 대한 열처리 조건과 Mg 분말의 영향)

  • Tan, Tan Kai;Kim, N.K.;Kim, Y.I.;Jun, B.H.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.1-4
    • /
    • 2007
  • The most common technique to fabricate $MgB_2$ superconducting wire is by powder-in-tube (PIT) technique. Therefore, the starting powder for the processing of $MgB_2$ superconductors is an important factor influencing the superconducting properties and performance of the conductors. In this study, the influence of magnesium precursor powders and annealing temperatures on the transition temperatures ($T_c$) and critical current densities ($J_c$) of $MgB_2/Fe$ wires was investigated. All the $MgB_2/Fe$ wires were fabricated by in situ PIT process. It was found that higher $J_c$ was obtained for $MgB_2$ wires with smaller particle size of magnesium precursor powders. The $J_c$ also increases with decreasing annealing temperatures.

  • PDF

Effect of Annealing Temperature on Superconducting Properties of Charcoal Doped $MgB_2$ (목탄이 첨가된 $MgB_2$의 초전도 성질에 미치는 열처리 온도의 영향)

  • Kim, Nam-Kyu;Tana, Kai Sin;Jun, Byung-Hyuk;Park, Hai-Woong;Joo, Jin-Ho;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.80-84
    • /
    • 2007
  • Charcoal was used as a carbon source for improving the critical current density of $MgB_2$ and the effect of annealing temperature on the $J_c$ of $MgB_2$ was investigated. The charcoal powder used in this study was $1{\sim}2$ microns in size and was prepared by wet attrition milling. $MgB_2$ bulk samples with a nominal composition of $Mg(B_{0.95}C_{0.05})_2$ were prepared by in situ process of Mg and B powders. The powder mixture was uniaxially compacted into pellets and heat treated at temperatures of $650^{\circ}C\;-\;1000^{\circ}C$ for 30 minutes in flowing Ar gas. It was found that superconducting transition temperature of $Mg(B_{0.95}C_{0.05})_2$ decreased by charcoal additions which indicates the carbon substitution for boron site. $J_c$ of $Mg(B_{0.95}C_{0.05})_2$ was lower than that of the undoped $MgB_2$ at the magnetic fields smaller than 4 Tesla, while it was higher than that of the undoped sample especially at the magnetic field higher than 4 T. High temperature annealing seems to be effective in increasing $J_c$ due to the enhanced carbon diffusion into boron sites.

  • PDF