DOI QR코드

DOI QR Code

Commercial MgB2 superconducting wires at Sam Dong

  • Received : 2020.05.04
  • Accepted : 2020.05.19
  • Published : 2020.06.30

Abstract

Since 2014, Sam Dong Co., Ltd. has successfully developed high-performance MgB2 superconducting wires with a kilometer-scale. Herein, we studied performances of various MgB2 wires fabricated by the Sam Dong with different Cu fractions and diameters for practical applications. Critical current densities of our commercial wire, 18+'1'Cu multifilamentary MgB2 wire, are estimated to be 270,000 A/㎠ at 3 T and 4.2 K and 100,000 A/㎠ at 2 T and 20 K, respectively. We further discuss research progress of various MgB2 superconducting wires at Sam Dong Co., Ltd and make an effort to align with customers' requirements.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, "Superconductivity at 39 K in magnesium diboride," Nature, vol. 410, pp. 63-64, 2001. https://doi.org/10.1038/35065039
  2. M. Tomsic, M. Rindfleisch, J. Yue, K. McFadden, D. Doll, J. Phillips, M. D. Sumption, M. Bhatia, S. Bohnenstiehl, and E. W. Collings, "Development of magnesium diboride ($MgB_2$) wires and magnets using in situ strand fabrication method," Physica C, vol 456, pp. 203-208, 2007. https://doi.org/10.1016/j.physc.2007.01.009
  3. C. Buzea and T. Yamashita, "Review of superconducting properties of $MgB_2$," Supercond. Sci. Technol., vol. 14, pp. R115-R146, 2001. https://doi.org/10.1088/0953-2048/14/11/201
  4. Y. Iwasa, "Towards liquid-helium-free, persistent-mode $MgB_2$ MRI magnets: FBML experience," Supercond. Sci. Technol., vol. 30, pp. 053001, 2017. https://doi.org/10.1088/1361-6668/aa5fed
  5. D. Patel, M. S. A. Hossain, W. Qiu, H. Jie, Y. Yamauchi, M. Maeda, M. Tomsic, S. Choi, and J. H. Kim, "Solid cryogen: a cooling system for future $MgB_2$ MRI magnet," Sci. Rep., vol. 7, pp. 43444, 2017. https://doi.org/10.1038/srep43444
  6. A. Ballarino, C. E. Bruzek, N. Dittmar, S. Giannelli, W. Goldacker, G. Grasso, F. Grilli, C. Haberstroh, S. Hole, F. Lesur, A. Marian, J. M. Martiez-Val, L. Martini, C. Rubbia, D. Salmieri, F. Schmidt, and M. Tropeano, "The BEST PATHS project on $MgB_2$ superconducting cables for very high power transmission," IEEE Trans. Appl. Supercond., vol. 26, pp. 5401705, 2016.
  7. I. Marino, A. Pujana, G. Sarmiento, S. Sanz, J. M. Merino, M. Tropeano, J. Sun, and T. Canosa, "Lightweight $MgB_2$ superconducting 10 MW wind generator," Supercond. Sci. Technol., vol. 29, pp. 024005, 2016. https://doi.org/10.1088/0953-2048/29/2/024005
  8. T. Yagai, S. Mizuno, T. Okubo, S. Mizuochi, M. Kamibayashi, M. Jinbo, T. Takao, N. Hirano, Y. Makida, T. Shintomi, T. Komagome, K. Tsukada, T. Onji, Y. Arai, A. Ishihara, M. Tomita, D. Miyagi, M. Tsuda, and T. Hamajima, "Development of design for large scale conductors and coils using $MgB_2$ for superconducting magnetic energy storage device," Cryogenics, vol. 96, pp. 75-82, 2018. https://doi.org/10.1016/j.cryogenics.2018.10.006
  9. www.samdongkorea.com
  10. J. H. Choi, D. G. Lee, J. H. Jeon, E. J. Lee, M. Maeda, and S. Choi, "Customized $MgB_2$ superconducting wire toward practical applications at Sam Dong in Korea," J. Supercond. Nov. Magn., vol. 32, pp. 1219-1223, 2019. https://doi.org/10.1007/s10948-018-4814-5
  11. E. McCalla and R. Bruning, "Amorphization of crystalline orthoboric acid on a vitreous $B_2O_3$ substrate," J. Mater. Res., vol. 17, pp. 3098-3104, 2002. https://doi.org/10.1557/JMR.2002.0448
  12. M. Maeda and S. Choi, "Effects of boron powder by hydrocarbon gas treatment on the structural and superconducting properties of in situ-processed $MgB_2$ polycrystalline materials," J. Alloys Compd., vol. 787, pp. 1265-1271, 2019. https://doi.org/10.1016/j.jallcom.2019.02.145
  13. X. Xu, M. J. Qin, K. Konstantinov, D. I. Santos, W. K. Yeoh, J. H. Kim, and S. X. Dou, "Effect of boron powder purity on superconducting properties of $MgB_2$," Supercond. Sci. Technol., vol. 19, pp. 466-469, 2006. https://doi.org/10.1088/0953-2048/19/6/009
  14. J. H. Kim, S. X. Dou, J. L. Wang, D. Q. Shi, X. Xu, M. S. A. Hossain, W. K. Yeoh, S. Choi, and T. Kiyoshi, "The effects of sintering temperature on superconductivity in $MgB_2$/Fe wires," Supercond. Sci. Technol., vol. 20, pp. 448-451, 2007. https://doi.org/10.1088/0953-2048/20/5/007
  15. J. H. Kim, S. X. Dou, D. Q. Shi, M. Rindfleisch, and M. Tomsic, "Study of MgO formation and structural defects in in situ processed $MgB_2$/Fe wires," Supercond. Sci. Technol., vol. 20, pp. 1026-1031, 2007. https://doi.org/10.1088/0953-2048/20/10/023
  16. P. Mikheenko, E. Martinez, A. Bevan, J. S. Abell, and J. L. MacManus-Driscoll, "Grain boundaries and pinning in bulk $MgB_2$," Supercond. Sci. Technol., vol. 20, pp. S264-S270, 2007. https://doi.org/10.1088/0953-2048/20/9/S22
  17. J. H. Kim, S. Oh, Y.-U. Heo, S. Hata, H. Kumakura, A. Matsumoto, M. Mitsuhara, S. Choi, Y. Shimada, M. Maeda, J. L. MacManus-Driscoll, and S. X. Dou, "Microscopic role of carbon on $MgB_2$ wire for critical current density comparable to NbTi," NPG Asia Mater., vol. 4, pp. E3, 2012. https://doi.org/10.1038/am.2012.3
  18. J. H. Kim, S. Oh, H. Kumakura, A. Matsumoto, Y.-U. Heo, K.-S. Song, Y.-M. Kang, M. Maeda, M. Rindfleisch, M. Tomsic, S. Choi, and S. X. Dou, "Tailored materials for high-performance $MgB_2$ wire," Adv. Mater., vol. 23, pp. 4942-4946, 2011. https://doi.org/10.1002/adma.201101243
  19. V. Braccini, D. Nardelli, R. Penco, and G. Grasso, "Development of ex situ processed $MgB_2$ wires and their applications to magnets," Physica C, vol. 456, pp. 209-217, 2007. https://doi.org/10.1016/j.physc.2007.01.030
  20. K. Vinod, N. Varghese, R. G. A. Kumara, U. Syamaprasad, S. B. Roy, "Influence of Mg particle size on the reactivity and superconducting properties of in situ $MgB_2$," J. Alloy. Compd., vol. 464, pp 33-37, 2008. https://doi.org/10.1016/j.jallcom.2007.10.030
  21. D. Yang, H. Sun, H. Lu, Y. Guo, X. Li, and X. Hu, "Experimental study on the oxidation of $MgB_2$ in air at high temperature," Supercond. Sci. Technol., vol. 16, pp. 576-581, 2003. https://doi.org/10.1088/0953-2048/16/5/306
  22. M. Maeda, J. H. Kim, S. Oh, W. X. Li, K. Takase, Y. Kuroiwa, S. X. Dou, and Y. Takano, "Enhancing the superconducting properties of magnesium diboride without doping," J. Am. Ceram. Soc., vol. 96, pp. 2893-2897, 2013. https://doi.org/10.1111/jace.12419
  23. C. Poole, T. Baig, R. J. Deissler, D. Doll, M. Tomsic, and M. Martens, "Numerical study on the quench propagation in a 1.5T $MgB_2$ MRI magnet design with varied wire compositions," Supercond. Sci. Technol., vol. 29, pp. 044003, 2016. https://doi.org/10.1088/0953-2048/29/4/044003
  24. M. D. Sumption, M. A. Susner, M. Bhatia, M. A. Rindfleisch, M. J. Tomsic, K. J. McFadden, and E. W. Collings, "High Critical Current Density Multifilamentary $MgB_2$ Strands," IEEE Trans. Appl. Supercond., vol. 17, pp. 2838-2841, 2007. https://doi.org/10.1109/TASC.2007.899399
  25. D. N. Kim, B.-H. Jun, S.-D. Park, C.-J. Kim, and H. W. Park, "Effects of the size of Mg powder on the formation of $MgB_2$ and the superconducting properties," Prog. Supercond. Cryog., vol.18, pp. 9-14, 2016. https://doi.org/10.9714/psac.2016.18.4.009