• Title/Summary/Keyword: Mg particles

Search Result 742, Processing Time 0.028 seconds

Absorption of Copper(Cu) by Vegetation on Reservoir Sediment Exposed after Drawdown (저수위시 노출된 저수지 저니 상의 식생과 구리(Cu)의 흡수)

  • 이충우;차영일
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.123-133
    • /
    • 1993
  • Shingal reservoir is a relatively small (211ha) and shallow impoundment, and approximately 25 ha of its sediment is exposed after spring drawdown. At least 14 vascular p13n1 species germinate on the exposed sediment, but Persimria vulgaris Webb et Moq. quickly dominates the vegetation. In order to estimate the role of the vegetation in the dynamics of heavy metal pollutants in the reservoir, Cu concentration of water, fallout particles, exposed sediment, and tissues of p. vulgaris, Ivas analyzed. Cu content in reservoir water decreased from $13.10mg/m^2$ on May 15 (before dralvdown) to $3.08mg/m^2$ in June 1 (after drawdown), mainly due to the loiwering of water level. Average atmospheric deposition of Cu by fallout particles was $10.84 {\mu}g/m^2/day$. Cu content in the surface 15cm of exposed sediment decreased from $5.094g1m^2$ right after drawdown, to $0.530g/m^2$ in 41 days, which is a 89.6% decrease. Therefore up to 99.7% of Cu in the reservoir appears to exist in the sediment. only 0.3% in water If the rate of atmospheric Input by fallout particles is assumed to have been the same since 1958, when the reservoir was completed, cumulative input of Cu during the 38 years would have been $150.35mg/m^2$, which is only 3.0% of Cu content in sediment right after drawdown. Therefore, most of Cu in the Shingal reservoir must have been transported by the Shingal-chun flowing into the reservoir, Standing crop of vegetation on the exposed sediment 41 days after drawdown was $730.67g/m^2$, of which 630.91g/m2 was p. vulgaris alone, and Cu content in P vulgaris at this time was $6.612mg/m^2$. This was only 0.13% of Cu in the exposed sediment, but was 50.5% of Cu in water before drawdown, or 167% of the average annual input of Cu by atmospheric deposition. If other plants were assumed to absorb Cu to the same concentration as p. vulgaris, total amount of Cu absorbed in 41 days by vegetation on the exposed sediment is estimated to be 1913.3 g, which is a considerable contribution to the purification of the reservoir water.

  • PDF

Absorption of Copper(Cu) by Vegetation on Reservoir Sediment Exposed after Drawdown (저수위시 노출된 저수지 저니 상의 식생과 구리(Cu)의 흡수)

  • Lee, Chung-U;Cha, Yeong-Il
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.29-29
    • /
    • 1993
  • Shingal reservoir is a relatively small (211ha) and shallow impoundment, and approximately 25 ha of its sediment is exposed after spring drawdown. At least 14 vascular p13n1 species germinate on the exposed sediment, but Persimria vulgaris Webb et Moq. quickly dominates the vegetation. In order to estimate the role of the vegetation in the dynamics of heavy metal pollutants in the reservoir, Cu concentration of water, fallout particles, exposed sediment, and tissues of p. vulgaris, Ivas analyzed. Cu content in reservoir water decreased from $13.10mg/m^2$ on May 15 (before dralvdown) to $3.08mg/m^2$ in June 1 (after drawdown), mainly due to the loiwering of water level. Average atmospheric deposition of Cu by fallout particles was $10.84 {\mu}g/m^2/day$. Cu content in the surface 15cm of exposed sediment decreased from $5.094g1m^2$ right after drawdown, to $0.530g/m^2$ in 41 days, which is a 89.6% decrease. Therefore up to 99.7% of Cu in the reservoir appears to exist in the sediment. only 0.3% in water If the rate of atmospheric Input by fallout particles is assumed to have been the same since 1958, when the reservoir was completed, cumulative input of Cu during the 38 years would have been $150.35mg/m^2$, which is only 3.0% of Cu content in sediment right after drawdown. Therefore, most of Cu in the Shingal reservoir must have been transported by the Shingal-chun flowing into the reservoir, Standing crop of vegetation on the exposed sediment 41 days after drawdown was $730.67g/m^2$, of which 630.91g/m2 was p. vulgaris alone, and Cu content in P vulgaris at this time was $6.612mg/m^2$. This was only 0.13% of Cu in the exposed sediment, but was 50.5% of Cu in water before drawdown, or 167% of the average annual input of Cu by atmospheric deposition. If other plants were assumed to absorb Cu to the same concentration as p. vulgaris, total amount of Cu absorbed in 41 days by vegetation on the exposed sediment is estimated to be 1913.3 g, which is a considerable contribution to the purification of the reservoir water.

Microstructural evolution of primary solid particles and mechanical properties of AI-Si alloys by rheocasting (AI-Si계 리오캐스팅합금의 초정입자의 응고조직 및 기계적성질)

  • Lee, J.I.;Lee, H.I.;Ryoo, Y.H.;Kim, D.H.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.244-252
    • /
    • 1994
  • The morphological changes of primary solid particles as a fuction of process time on Al-Si alloys during semi-solid state processing with a shear rate of 200s were studied. In hypereutectic Al-15.5wt%Si alloy, it was observed that primary Si crystals are fragmented in the early stage of stirring and morphologies of primary Si crystals change from faceted to spherical during isothermal shearing for 60 minutes. In quaternary Al-12.5wt%Si-2.9wt%Cu-0.7wt%Mg alloy system, it was observed both primary silicon and ${\alpha}$-alumunum particles. Microstructural evolution of primary Si crystals was similar to that of the hypereutectic Al-Si alloy but equiaxed ${\alpha}$-Al dendrites are broken into nearly spherical at the early stage of shearing and later stage of the isothermal shearing ${\alpha}$- Al particles are slightly coarsoned by Ostwald ripening. Mechanical properties of Al-Si-Cu-Mg alloy were compared to those from other processes (squeeze casting and gravity casting). After T6 heat treatment, comparable values of hardness were obtained while slightly lower compressive strength values were observed in rheocast alloy. The elongation, on the other hand, exhibited significant increasement of 15% over gravity cast alloy.

  • PDF

Ammonium Production During the Nitrogen-Fixing Process by Wild Paenibacillus Strains and Cell-Free Extract Adsorbed on Nano $TiO_2$ Particles

  • Shokri, Dariush;Emtiazi, Giti
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1251-1258
    • /
    • 2010
  • During the nitrogen-fixing process, ammonia ($NH_3$) is incorporated into glutamate to yield glutamine and is generally not secreted. However, in this study, $NH_3$-excreting strains of nitrogen-fixing Paenibacillus were isolated from soil. The ammonium production by the Paenibacillus strains was assayed in different experiments (dry biomass, wet biomass, cell-free extract, and cell-free extract adsorbed on nano $TiO_2$ particles) inside an innovative bioreactor containing capsules of $N_2$ and $H_2$. In addition, the effects of different $N_2$ and $H_2$ treatments on the formation of $NH_3$ were assayed. The results showed that the dry biomass of the strains produced the most $NH_3$. The dry biomass of the Paenibacillus strain E produced the most $NH_3$ at 1.50, 0.34, and 0.27 ${\mu}M$ $NH_3$/mg biomass/h in the presence of $N_2$ + $H_2$, $N_2$, and $H_2$, respectively, indicating that a combined effluent of $N_2$ and $H_2$ was vital for $NH_3$ production. Notwithstanding, a cell-free extract (CFE) adsorbed on nano $TiO_2$ particles produced the most $NH_3$ and preserved the enzyme activities for a longer period of time, where the $NH_3$ production was 2.45 ${\mu}M$/mg CFE/h over 17 h. Therefore, the present study provides a new, simple, and inexpensive method of $NH_3$ production.

Synthesis of High-Aspect-Ratio BaTiO3 Platelets by Topochemical Conversion and Fabrication of Textured Pb(Mg1/3Nb2/3)O3-32.5PbTiO3 Ceramics

  • Zhao, Wei;E, Lei;Ya, Jing;Liu, Zhifeng;Zhou, Heping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2305-2308
    • /
    • 2012
  • Perovskite structured barium titanate particles ($BaTiO_3$) platelets were synthesized by molten salt synthesis and topochemical microcrystal conversion. As the precursors of $BaTiO_3$, plate-like $BaBi_4Ti_4O_{15}$ particles were first synthesized by the reaction of $Bi_4Ti_3O_{12}$, $BaCO_3$, and $TiO_2$ at $1080^{\circ}C$ for 3 h in $BaCl_2$-KCl molten salt. After the topochemical reactions, layer-structured $BaBi_4Ti_4O_{15}$ particles transformed to the perovskite $BaTiO_3$ platelets. $BaTiO_3$ particles with thickness of approximately $0.5{\mu}m$ and a length of $10-15{\mu}m$ retained the morphology feature of the $BaBi_4Ti_4O_{15}$ precursor. For <001> $Pb(Mg_{1/3}Nb_{2/3})O_3-32.5PbTiO_3$ (PMNT)-5 wt % PbO piezoelectric ceramics textured with 5 vol % of $BaTiO_3$ templates, the Lotgering factor reached 0.82, and $d_{33}$ was 870 pC/N.

Preparation of Iron Nano-particle by Slurry Reduction Method from Leaching Solution of Spent Nd magnet (폐네오디뮴 자석 침출용액으로부터 Slurry 환원법을 이용한 철 Nano 분말 제조)

  • Ahn, Jong-Gwan;Gang, Ryunji;You, Haebin;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.22-29
    • /
    • 2014
  • Recycling process of iron should be developed for efficient recovery of neodymium (Nd), rare metal, from acid-leaching solution of Nd magnet. In this study, $FeCl_3$ solution as iron source was used for preparation of iron nano particles with the condition of various factors, such as, reductant, and surfactant. $Na_4P_2O_7$ and Polyvinylpyrrolidone (PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride ($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed by using XRD, SEM for measuring shape and size. Iron nano particles were prepared at the ratio of 1:5 (Fe (III) : $NaBH_4$). Size and shape of iron particles were round-form and 50 ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4P_2O_7$ was negative value, which was good for dispersion of metal particle. When $Na_4P_2O_7$ (100 mg/L), PVP($FeCl_3:PVP$ = 1 : 4, w/w) and Pd($FeCl_3:PdCl_2$ = 1 : 0.001, w/w) were used, iron nano particles which were round-shape, well-dispersed and near 100 nm-sized range. In this condition, $FeCl_3$ solution changed with spent Nd leachate solution, and then it is possible to be made round-formed iron nano particles at pH 9 and at the reaction bath over 20 L which is not include any surfactant.

Effects of Size of Metal Particles on Soil Microbial Community and Buck Wheat (금속 입자 크기가 토양 미생물 군집과 메밀에 미치는 영향)

  • Kim, Sung-Hyun;Kim, Jung-Eun;Gwak, Young-Ji;Kim, Yun-Ji;Lee, In-Sook
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.457-463
    • /
    • 2011
  • This study was carried out to compare the toxicity of nano and micrometer particles with Cu and Zn on soil microbial community and metal uptake of buck wheat. In microcosm system, soil was incubated for 14 days after soil aliquots were artificially contaminated with 1,000 mg/kg Cu, Zn nano and micro particles, respectively. After then, buck wheat was planted in incubating soils and non incubating soils. After 14 days, we compared bioaccumulation of metal, and microbial carbon substrate utilization patterns between incubating soils and non-incubating soils. The enrichment factor (EF) values of incubating samples were greater than non-incubating soils. Dehydrogenase activity had been inhibited by Cu and Zn nanoparticles in non-incubating soil, as well as it had been inhibited by Zn micro particles in incubating soils. Results of biolog test, it was not significant different between nano particles and micro particles. It cannot be generalized that nanoparticles of metal are always more toxic to soil microbial activity and diversity than micrometer-sized particles and the toxicity needs to be assessed on a case-by-case basis.

Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

  • Sinha, Shahnawaz;Amy, Gary;Yoon, Yeo-Min;Her, Nam-Guk
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.165-173
    • /
    • 2011
  • The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated microsand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of $C_{eq}=10\;{\mu}g/L$ were 500 mg/L for AA and GFH, 520-1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60-95%.

Selective Oxidation of Hydrogen Sulfide to Elemental Sulfur with Fe/MgO Catalysts in a Slurry Reactor

  • Lee, Eun-Ku;Jung, Kwang-Deog;Joo, Oh-Shim;Shul, Yong-Gun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.281-284
    • /
    • 2005
  • The Fe/MgO catalysts with different Fe loadings (1, 4, 6, 15 and 30 wt% Fe) were prepared by a wet impregnation with iron nitrate as precursor. All of the catalysts were characterized by BET surface analyzer, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). The maximum removal capacity of $H_2S$ was obtained with 15 wt% Fe/MgO catalyst which had the highest BET surface area among the measured catalysts. XRD of Fe/MgO catalysts showed that well dispersed Fe particles could be present on Fe/MgO with Fe loadings below 15 wt%. The crystallites of bulk $\alpha$-$Fe_2O_3$ became evident on 30 wt% Fe/MgO, which were confirmed by XRD. TPR profiles showed that the reducibility of Fe/MgO was strongly related to the loaded amounts of Fe on MgO support. Therefore, the highest removal efficiency of $H_2S$ in wet oxidation could be ascribed to a good dispersion and high reducibility of Fe/MgO catalyst. XPS studies indicated that the $H_2S$ oxidation with Fe/MgO could proceed via the redox mechanism ($Fe^{3+}\;{\leftrightarrow}\;Fe^{2+}$).

Synthesis of $MgB_2$ powders by ultrasonic spray pyrolysis (초음파 분무열분해를 이용한 $MgB_2$ 분말 합성)

  • Park, S.C.;Lim, Y.J.;Kang, S.G.;Chung, J.K.;Kim, C.J.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • Spherical $MgB_2$ powders was synthesized with the ultrasonic spray pyrolysis(USP) process using aqueous solutions of boron and magnesium ion. The properties of synthesized $MgB_2$ powder were characterized by XRD, SEM and EDS. A small amount of MgO was detected as the secondary phase out of the synthesized powder and the ratios of $MgB_2$ to MgO increased with increasing furnace temperature. The particle size and morphology of $MgB_2$ powder were investigated with varying molar concentration of the boron and magnesium solution and furnace temperature between $600^{\circ}C$ and $1000^{\circ}C$ in $Ar/H_2$. The average particle size of $MgB_2$ showed narrow distribution ranging from 300nm to 400nm. The morphology of particles exhibited mostly spherical shapes and uniform distribution.