DOI QR코드

DOI QR Code

Selective Oxidation of Hydrogen Sulfide to Elemental Sulfur with Fe/MgO Catalysts in a Slurry Reactor

  • Lee, Eun-Ku (Department of Chemical Engineering, Yonsei University) ;
  • Jung, Kwang-Deog (Eco-Nano Center, Korea Institute of Science and Technology) ;
  • Joo, Oh-Shim (Eco-Nano Center, Korea Institute of Science and Technology) ;
  • Shul, Yong-Gun (Department of Chemical Engineering, Yonsei University)
  • Published : 2005.02.20

Abstract

The Fe/MgO catalysts with different Fe loadings (1, 4, 6, 15 and 30 wt% Fe) were prepared by a wet impregnation with iron nitrate as precursor. All of the catalysts were characterized by BET surface analyzer, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). The maximum removal capacity of $H_2S$ was obtained with 15 wt% Fe/MgO catalyst which had the highest BET surface area among the measured catalysts. XRD of Fe/MgO catalysts showed that well dispersed Fe particles could be present on Fe/MgO with Fe loadings below 15 wt%. The crystallites of bulk $\alpha$-$Fe_2O_3$ became evident on 30 wt% Fe/MgO, which were confirmed by XRD. TPR profiles showed that the reducibility of Fe/MgO was strongly related to the loaded amounts of Fe on MgO support. Therefore, the highest removal efficiency of $H_2S$ in wet oxidation could be ascribed to a good dispersion and high reducibility of Fe/MgO catalyst. XPS studies indicated that the $H_2S$ oxidation with Fe/MgO could proceed via the redox mechanism ($Fe^{3+}\;{\leftrightarrow}\;Fe^{2+}$).

Keywords

References

  1. Estep, J. W.; McBride, G. T.; West J. R. Advances in Petroleum Chemistry and Refining 1962, 6, 315
  2. Goar, B. G. Oil Gas J. 1975, 25, 96
  3. Anon, Sulfur 1995, 20, 236
  4. Keller, N.; Huu, C. P.; Ledoux, M. J. Appl. Catal. 2001, 217, 205 https://doi.org/10.1016/S0926-860X(01)00601-9
  5. Lagas, J. A.; Borboom, J.; Berben, P. H.; Geus, J. W. Eur. Patent Applic. 0242006 (1988)
  6. Berben, P. H.; Geus, J. W. US Patent 4818740 (1989)
  7. Berben, P. H.; Geus, J. W. Eur. Patent Applic. 0242920 (1987)
  8. Bandel, G.; Willing, W. In The Doxosulfreen Claus Tail Gas Processing-Meeting Enhanced Sulfur Emission Standard; Sulpfur: 1987; p 96
  9. Savin, S.; Legendre, O.; Nougayrede, J. B.; Nedez, C. Sulfur 2000, 296, 523
  10. Savin, S.; Nougayrede, J. B.; Willing, W.; Bandel, G. Int. J. Hydrocarbon Eng. 1998, 4, 54
  11. Vrieland, G. E.; Murchison, C. B. Appl. Catal. 1996, 134, 101 https://doi.org/10.1016/0926-860X(95)00213-8
  12. Lefers, J. B.; Koestsier, W. T.; Swaaij, W. P. M. V. Chem. Eng. J. 1978, 15, 111 https://doi.org/10.1016/0300-9467(78)85003-5
  13. Quinlan, M. P.; Leppin, D. In AIChE Spring National Meeting; New Orleans, 1993; p 155
  14. Johnson, J. E.; Tzap, S. J.; Kelley, R. E.; Laczko, L. P. Oil Gas J. 1993, 22, 20
  15. Cadus, L. E.; Abello, M. C.; Gomez, M. F.; Rivarla, J. B. Ind. Eng. Chem. Res. 1996, 35, 14 https://doi.org/10.1021/ie950282p
  16. Meunier, F. C.; Yasmeen, A.; Ross, J. R. H. Catal. Today 1997, 37, 33 https://doi.org/10.1016/S0920-5861(96)00253-2
  17. Lee, K. H.; Yoon, Y. S.; Ueda, W.; Moro-Oka, Y. Catal. Lett. 1997, 46, 267 https://doi.org/10.1023/A:1019047324930
  18. Shimada, J.; Sato, T.; Yoshimura, Y.; Hiraishi, J.; Nishijima, A. J. Catal. 1988, 110, 275 https://doi.org/10.1016/0021-9517(88)90319-3
  19. Dalai, A. K.; Tollefson, E. L. Can. J. Chem. Eng. 1998, 75, 902
  20. Mikhalovsky, S. V.; Zaitsev, Y. P. Carbon 1997, 35, 1367 https://doi.org/10.1016/S0008-6223(97)00104-8
  21. Adib, F.; Bagreev, A.; Bandosz, T. J. Environ. Sci. Techol. 2000, 34, 686 https://doi.org/10.1021/es990341g
  22. Jung, K. D.; Joo, O. S.; Cho, S. H.; Han, S. H. Appl. Catal. 2001, 240, 213
  23. Jung, K. D.; Joo, O. S.; Kim, C. S. Catal. Letters 2002, 84, 53 https://doi.org/10.1023/A:1021072500744
  24. Spretz, R.; Marchetti, S. G.; Ulla, M. A.; Lombardo, E. A. J. Catal. 2000, 194, 167 https://doi.org/10.1006/jcat.2000.2921
  25. Shen, J.; Guang, B.; Tu, M.; Chen, Y. Catal. Today 1996, 30, 77 https://doi.org/10.1016/0920-5861(95)00329-0
  26. Graat, P. C. J.; Somers, M. A. J. Appl. Surf. Sci. 1996, 100, 36 https://doi.org/10.1016/0169-4332(96)00252-8
  27. Bukhtiyarova, G. A.; Bukhtiyarov, V. I.; Sakaeva, N. S.; Kaichev, V. V.; Zolotovskii, B. P. J. Mol. Catal. 2000, 158, 251 https://doi.org/10.1016/S1381-1169(00)00085-6
  28. Hardison, L. C. In AIChE Spring National Meeting; New Orleans, 1993; p 124
  29. Newman, D. W.; Lynn, S. Am. Inst. Chem. Eng. J. 1984, 30, 62 https://doi.org/10.1002/aic.690300111
  30. Shin, M. Y.; Nam, C. M.; Park, D. W.; Chung, J. S. Appl. Catal. 2001, 211, 213 https://doi.org/10.1016/S0926-860X(00)00866-8

Cited by

  1. Biogas as a source of renewable syngas production: advances and challenges vol.2, pp.3, 2011, https://doi.org/10.4155/bfs.11.15
  2. Catalytic Systems for the H2S Wet Oxidation at room Temperature vol.11, pp.3, 2007, https://doi.org/10.1007/s10563-007-9022-4
  3. Hydrogen production on iron–magnesium oxide in the high-temperature water-gas shift reaction vol.98, pp.2, 2009, https://doi.org/10.1007/s11144-009-0084-3
  4. A review of biogas purification processes vol.3, pp.1, 2009, https://doi.org/10.1002/bbb.117
  5. Influence of iron precursors on catalytic wet oxidation of H2S to sulfur over Fe/MgO catalysts vol.239, pp.1, 2005, https://doi.org/10.1016/j.molcata.2005.05.034
  6. A green approach for phenol synthesis over Fe3+/MgO catalysts using hydrogen peroxide vol.316, pp.1, 2010, https://doi.org/10.1016/j.molcata.2009.10.010
  7. Present technologies for hydrogen sulfide removal from gaseous mixtures vol.29, pp.6, 2013, https://doi.org/10.1515/revce-2013-0017
  8. Present technologies for hydrogen sulfide removal from gaseous mixtures vol.29, pp.6, 2013, https://doi.org/10.1515/revce-2013-0017
  9. Cobalt and Iron Ions in MgO Nanocrystals: Should They Stay or Should They Go vol.123, pp.42, 2005, https://doi.org/10.1021/acs.jpcc.9b07350
  10. Highly Active and Sulfur‐Resistant Fe–N4 Sites in Porous Carbon Nitride for the Oxidation of H2S into Elemental Sulfur vol.16, pp.42, 2005, https://doi.org/10.1002/smll.202003904
  11. Highly Poison‐Resistant Single‐Atom Co–N4 Active Sites with Superior Operational Stability over 460 h for H2S Catalytic Oxidation vol.17, pp.46, 2021, https://doi.org/10.1002/smll.202104939