• 제목/요약/키워드: Mg and Mg-Al alloy

검색결과 584건 처리시간 0.021초

고압 금형주조용 Al-9%Si-0.3%Mg 합금의 Fe, Mn 함량이 인장특성에 미치는 영향 (Effect of Fe and Mn Contents on the Tensile Property of Al-9%Si-0.3%Mg Alloy for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제31권1호
    • /
    • pp.18-25
    • /
    • 2011
  • Effect of Fe and Mn contents on the tensile properties has been studied in Al-9wt%Si-0.3wt%Mg alloy. As Fe content of Al-9wt%Si-0.3wt%Mg-0.5wt%Mn alloy increased from 0.15wt% to 0.45wt%, tensile strength of as-cast alloy decreased from 192 MPa to 174 MPa, and elongation of the alloy also decreased from 4.8% to 4.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with high Fe/Mn ratio of the alloy. However when Mn content of Al-9wt%Si-0.3wt%Mg-0.45wt%Fe alloy increased from 0.3wt% to 0.5wt%, tensile strength of T6 aged alloy increased from 265 MPa to 275 MPa, and elongation of the alloy increased from 2.3% to 3.6%. These improvements attribute to chinese script, ${\alpha}-Al_{15}(Mn,Fe)_3Si_2$ phase shape-modified from ${\beta}-Al_5FeSi$ phase with low Fe/Mn ratio of the alloy.

경사냉각판을 이용한 Al-Zn-Mg-(Sc) 반응고 합금 제조의 최적화 및 재가열 특성 (Optimum Fabrication Conditions and Reheating Characteristic of Semi-Solid Al-Zn-Mg-(Sc) Alloy by Inclined Cooling Plate)

  • 김태훈;심성용;박형원;임수근
    • 한국주조공학회지
    • /
    • 제29권5호
    • /
    • pp.213-219
    • /
    • 2009
  • Optimum conditions for production of semi-solid Al-Zn-Mg alloy billets was carried out by the Taguchi design method. And, Al-Zn-Mg alloy billets contained Sc (free, 0.1 and 0.3 mass %) were fabricated at optimum conditions. Evolution of microstructure in semi-solid state was investigated through various liquid fractions, holding times and holding temperatures. The Al-Zn-Mg alloy billets reheated at $615^{\circ}C$ during 30min are grain growth and it was fractured due to increasing liquid fraction before quenching. And, during reheating up to $600^{\circ}C$, grain growth of Al-Zn-Mg alloy billets contained Sc (0.1 and 0.3 mass %) was not occurred in comparison with those of Al-Zn-Mg alloy without Sc. It was thought that $Al_3Sc$ phases have a pinning effect in grain boundary and Sc content of 0.1 mass% is able to inhibit grain growth effectively through reheating process.

Mg-Al합금 분진의 폭발특성에 미치는 마그네슘 성분의 영향 (Influence of the Magnesium Content on the Explosion Properties of Mg-Al Alloy Dusts)

  • 한우섭;이근원
    • 한국가스학회지
    • /
    • 제16권6호
    • /
    • pp.1-6
    • /
    • 2012
  • Mg-Al합금 분진의 마그네슘 성분 비율이 분진폭발특성에 미치는 영향을 알기 위하여 Siwek 20 L 구형 분진폭발시험장치를 사용하여 농도를 변화시키면서 실험적으로 조사하였다. 이를 위하여 체적평균입경이 $151{\sim}160{\mu}m$의 Mg-Al합금 분진을 사용하였다. 그 결과 Mg-Al합금에서의 Mg성분의 증가는 폭발하한농도의 감소와 최대폭발압력의 증가로 나타났다. 또한 Mg-Al합금의 최대폭발압력과 최대폭발압력상승속도는 주로 분진 농도에 의존하였다. 그러나 Mg-Al (40:60 wt%), Mg-Al (50:50 wt%) 및 Mg-Al (60:40 wt%)의 폭발지수(Kst)에 있어서, 마그네슘 성분의 증가에 따라서 폭발지수가 증가함을 알 수 있었다.

Mg-Al 합금에서 등온 시효로 생성된 불연속 석출물의 미세조직과 경도에 미치는 Al 함량의 영향 (Effects of Al Content on Microstructure and Hardness of Discontinuous Precipitates Formed by Isothermal Aging in Mg-Al Alloys)

  • 전중환
    • 열처리공학회지
    • /
    • 제34권6호
    • /
    • pp.287-293
    • /
    • 2021
  • This study was intended to investigate the influence of Al content on hardness and microstructural characteristics of discontinuous precipitates (DPs) formed by isothermal aging in Mg-8.7%Al and Mg-10%Al alloys. In order to obtain large amount of DPs in the microstructure, the alloy specimens were solution-treated at 688K for 24 h followed by water quenching, and then aged at 418K for 48h. The Mg-Al alloy with higher Al content was characterized by higher volume fraction of DPs at the same aging condition, lower interlamellar spacing of the DPs, thinner β phase layer and higher β phase content in the DPs. This is closely related to the higher velocity of discontinuous precipitation process resulting from the higher Al supersaturation in the α-(Mg) matrix. The Mg-10%Al alloy showed higher hardness of the DPs and greater difference in hardness between as-cast state and DPs than the Mg-8.7%Al alloy.

Al-Mg-Si 단조품의 시효 모델 (Aging model for Al-Mg-Si forged part)

  • 권용남;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.307-310
    • /
    • 2005
  • Ageing behavior of the Al-Mg-Si alloy was modeled for the use of optimization of Al forging product. Typical precipitates of Al-Mg-Si alloy are a wide variety of metastable phases (e.g. GP zones, $\beta',\beta'$). These rod shaped particles take a role to hinder the dislocation movement. The precipitation sequence in Al-Mg-Si alloys is quite complex and the strength of precipitate particles differs with the ageing condition. In the present study, the ageing behavior of Al-Mg-Si alloy was investigated by using an industrial grade Al 6061 alloy forged product, which was a perform for an Al impeller for turbo charger. The precipitate hardening models by Esmaeili's approach were used for the analysis of ageing behavior.

  • PDF

직접가압주조한 Al-5%Ni-5%Mg-(Mm)합금의 조직 및 기계적 성질에 미치는 가압력의 영향 (Effect of Pressure on Microstructures and Mechanical Properties in Al-5%Ni-5%Mg-(Mm) Alloy Manufactured by Direct Squeeze Casting)

  • 우기도;정동석;황인오;김석원
    • 한국주조공학회지
    • /
    • 제21권2호
    • /
    • pp.127-134
    • /
    • 2001
  • Misch metal (rare earth element, Ce, La, Nd, Pr) which has large influence on high-temperature stability and toughness was added to the Al-5%Ni-5%Mg alloy, and squeeze casting was used for Al-5%Ni-5%Mg-(Mm) alloys. The effect of applied pressure and misch metal additions on mechanical properties in Al-5%Ni-5%Mg alloy by direct squeeze casting has been investigated. The applied pressure were 0 MPa(gravity casting), 25, 50 and 75 MPa. Squeeze-cast Al-5%Ni-5%Mg-(Mm) alloys had better mechanical properties than those of non-pressurized cast alloys because of the increased cooling rate by the application of pressure during solidification. By the addition of misch metal in Al-5%Ni-5%Mg alloy, better combination of strength and elongation was obtained. The addition of 0.3%Mm in Al-5%Ni-5%Mg alloy improved the heat resistant property due to the formation of fine eutectic phases.

  • PDF

In-Situ SEM Observation and DIC Strain Analysis for Deformation and Cracking of Hot-Dip ZnMgAl Alloy Coating

  • Naoki Takata;Hiroki Yokoi;Dasom Kim;Asuka Suzuki;Makoto Kobashi
    • Corrosion Science and Technology
    • /
    • 제23권2호
    • /
    • pp.113-120
    • /
    • 2024
  • An attempt was made to apply digital image correlation (DIC) strain analysis to in-situ scanning electron microscopy (SEM) observations of bending deformation to quantify local strain distribution inside a ZnMgAl-alloy coating in deformation. Interstitial-free steel sheets were hot-dipped in a Zn-3Mg-6Al (mass%) alloy melt at 400 ℃ for 2 s. The specimens were deformed using a miniature-sized 4-point bending test machine inside the SEM chamber. The observed in situ SEM images were used for DIC strain analysis. The hot-dip ZnMgAl-alloy coating exhibited a solidification microstructure composed of a three-phase eutectic of fine Al (fcc), Zn (hcp), and Zn2Mg phases surrounding the primary solidified Al phases. The relatively coarsened Zn2Mg phases were locally observed inside the ZnMgAl-alloy coating. The DIC strain analysis revealed that the strain was localized in the primary solidified Al phases and fine eutectic microstructure around the Zn2Mg phase. The results indicated high deformability of the multi-phase microstructure of the ZnMgAl-alloy coating.

Hydriding과 Dehydriding에서 입자 미세화 (Fragmentation of Particles in Hydriding and Dehydriding)

  • 남인탁
    • 산업기술연구
    • /
    • 제3권
    • /
    • pp.47-51
    • /
    • 1983
  • The fragmentation of Mg and Mg-25(w/o) Al alloy particles in hydriding-dehydriding was studied. The formation of hydride was made in autoclave, and formed hydrides were $MgH_2$ in both pure Mg and Mg-25(w/o) Al alloy particles. Pure Mg was more fractured than Mg-25(w/o) Al alloy in hydriding. The addition of Al exhibited fragmentation in hydriding, but displayed the same fragmentation as Mg in dehydriding.

  • PDF

금형 주조한 마그네슘 합금의 부식 거동에 미치는 Al 및 Sn의 영향 (The Effect of Al and Sn Additions on Corrosion Behavior of Permanent Mold Casting Magnesium Alloy)

  • 김병호;서재현;박경철
    • 한국주조공학회지
    • /
    • 제35권2호
    • /
    • pp.36-43
    • /
    • 2015
  • In this study, the influences of aluminum and tin additions (individual and combined) on corrosion behavior of magnesium alloy have been determined. The studied alloys were fabricated by permanent mold casting method to measure the corrosion properties, a potentiodynamic test, hydrogen evolution test and immersion test were carried out in a 3.5% NaCl solution at pH 7.2. From the results of microstructure analysis, the Mg-9Al-1Zn alloy was found to be composed of ${\alpha}$-Mg and rod-like $Mg_{17}Al_{12}$ phase and the Mg-5Sn-5Al-1Zn alloy was found to be composed of ${\alpha}$-Mg, rod-like $Mg_{17}Al_{12}$ and $Mg_2Sn$ phases. In the case of the Mg-9Sn-1Zn alloy, the microstructure was composed of ${\alpha}$-Mg and eutectic $Mg_2Sn$ phase. With Sn addition (individual and combined), the corrosion resistance of the Mg alloys improved.

Solidification Cracking Susceptibility of Al-Mg-Si Alloy Laser Welds

  • Yoon, J.W.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.42-46
    • /
    • 2002
  • The solidification cracking susceptibilities of Al-Mg-Si alloy laser welds were assessed using the self-restraint tapered specimen crack test. The cracking susceptibility of 6061 and 6082 Al-Mg-Si alloy laser welds was substantially reduced when the filler wire containing high Si such as Al-12 wt.% Si (4047A) was used. The amount of eutectic was observed to affect the solidification cracking of Al-Mg-Si alloy laser welds. Abundant eutectic seems to heal the cracking and reduces the cracking susceptibility, while an initial increase in eutectic liquid leads to the increased cracking tendency.

  • PDF