DOI QR코드

DOI QR Code

In-Situ SEM Observation and DIC Strain Analysis for Deformation and Cracking of Hot-Dip ZnMgAl Alloy Coating

  • Naoki Takata (Department of Materials Process Engineering, Nagoya University) ;
  • Hiroki Yokoi (Department of Materials Process Engineering, Nagoya University) ;
  • Dasom Kim (Department of Materials Process Engineering, Nagoya University) ;
  • Asuka Suzuki (Department of Materials Process Engineering, Nagoya University) ;
  • Makoto Kobashi (Department of Materials Process Engineering, Nagoya University)
  • Received : 2024.01.12
  • Accepted : 2024.03.24
  • Published : 2024.04.30

Abstract

An attempt was made to apply digital image correlation (DIC) strain analysis to in-situ scanning electron microscopy (SEM) observations of bending deformation to quantify local strain distribution inside a ZnMgAl-alloy coating in deformation. Interstitial-free steel sheets were hot-dipped in a Zn-3Mg-6Al (mass%) alloy melt at 400 ℃ for 2 s. The specimens were deformed using a miniature-sized 4-point bending test machine inside the SEM chamber. The observed in situ SEM images were used for DIC strain analysis. The hot-dip ZnMgAl-alloy coating exhibited a solidification microstructure composed of a three-phase eutectic of fine Al (fcc), Zn (hcp), and Zn2Mg phases surrounding the primary solidified Al phases. The relatively coarsened Zn2Mg phases were locally observed inside the ZnMgAl-alloy coating. The DIC strain analysis revealed that the strain was localized in the primary solidified Al phases and fine eutectic microstructure around the Zn2Mg phase. The results indicated high deformability of the multi-phase microstructure of the ZnMgAl-alloy coating.

Keywords

References

  1. A. R. Marder, The Metallurgy of Zinc-Coated Steel, Progress in Materials Science, 45, 191 (2000). Doi: http://dx.doi.org/10.1016/S0079-6425(98)00006-1
  2. D. Mizuno, Automotive Corrosion and Accelerated Corrosion Tests for Zinc Coated Steels, ISIJ International, 58, 1562 (2018). Doi: https://doi.org/10.2355/isijinternational.ISIJINT-2018-159
  3. R.W. Richards, R.D. Jones, P.D. Clements, and H. Clarke, Metallurgy of continuous hot dip aluminizing, International Materials Reviews, 39, 191 (1994). Doi: https://doi.org/10.1179/imr.1994.39.5.191
  4. K. Honda, K. Ushioda, and W. Yamada, Influence of Si Addition to the Coating Bath on the Growth of the Al-Fe Alloy Layer in Hot-dip Zn-Al-Mg Alloy-coated Steel Sheets, ISIJ International, 51, 1895 (2011). Doi: https://doi.org/10.2355/isijinternational.51.1895
  5. Y. Chen, Y. Liu, H. Tu, C. Wu, X. Su, and J. Wang, Effect of Ti on the growth of the Fe-Al layer in a hot dipped Zn-6Al-3Mg coating, Surface and Coatings Technology, 275, 90 (2015). Doi: https://doi.org/10.1016/j.surfcoat.2015.05.034
  6. K. Li, Y. Liu, H. Tu, X. Su, and J. Wang, Effect of Si on the growth of Fe-Al intermetallic layer in Zn-11%Al-3%Mg coating, Surface and Coatings Technology, 306, 390 (2016). Doi: https://doi.org/10.1016/j.surfcoat.2016.05.033
  7. J.-K. Chang and C.-S. Lin, Microstructural Evolution of 11Al-3Mg-Zn Ternary Alloy-Coated Steels During Austenitization Heat Treatment, Metallurgical and Materials Transactions A, 48, 3734 (2017). Doi: https://doi.org/10.1007/s11661-017-4126-6
  8. Y. Xie, A. Du, X. Zhao, R. Ma, Y. Fa, and X. Cao, Effect of Mg on Fe-Al interface structure of hot-dip galvanized Zn-Al-Mg alloy coatings, Surface and Coatings Technology, 337, 313 (2018). Doi: https://doi.org/10.1016/j.surfcoat.2018.01.038
  9. T. Tsukahara, N. Takata, S. Kobayashi, and M. Takeyama, Mechanical Properties of Fe2Al5 and FeAl3 Intermetallic Phases at Ambient Temperature, Tetsu-to-Hagane, 102, 89 (2016). Doi: https://doi.org/10.2355/tetsutohagane.TETSU-2015-063
  10. H. Yokoi, N. Takata, A. Suzuki, and M. Kobashi, Formation sequence of Fe-Al intermetallic phases at interface between solid Fe and liquid Zn-6Al-3Mg alloy, Intermetallics, 109, 74 (2019). Doi: https://doi.org/10.1016/j.intermet.2019.03.011
  11. S. Tanaka, K. Honda, A. Takahashi, Y. Morimoto, M. Kurosaki, H. Shindo, K. Nishimura, and M. Sugiyama, Proc. 5th Int. Conf. on Zinc and Zinc Alloy Coated Steel (Galvatech '01), pp. 153 - 160, Brussels, Belgium (2001).
  12. A. Nishimoto, J. Inagaki, and K. Nakaoka, Influence of Alloying Elements in Hot Dip Galvanized High Tensile Strength Sheet Steels on the Adhesion and Iron-zinc Alloying Rate, Tetsu-to-Hagane, 68, 1404 (1982). Doi: https://doi.org/10.2355/tetsutohagane1955.68.9_1404
  13. L. Chen, R. Fourmentin, and J. R. McDermid, Morphology and Kinetics of Interfacial Layer Formation during Continuous Hot-Dip Galvanizing and Galvannealing, Metallurgical and Materials Transactions A, 39, 2128 (2008). Doi: https://doi.org/10.1007/s11661-008-9552-z
  14. H. Li, N. Takata, M. Kobashi, and A. Serizawa, In Situ Scanning Electron Microscopy Observation of Crack Initiation and Propagation in Hydroxide Films Formed by Steam Coating on Aluminum-Alloy Sheets, Materials, 13, 1238 (2020). Doi: https://doi.org/10.3390/ma13051238
  15. B. Pan, Recent Progress in Digital Image Correlation, Experimental Mechanics, 51, 1223 (2011). Doi: https://doi.org/10.1007/s11340-010-9418-3
  16. D. Kim, N. Takata, H. Yokoi, A. Suzuki, and M. Kobashi, Microstructural factors controllong crack resistance of Zn-Al-Mg alloy coatings prepared via hot-dip galvanizing process: Combined approach of in-situ SEM observation with digital image correlation analysis, Journal of Materials Research and Technology, 29, 1535 (2024). Doi: https://doi.org/10.1016/j.jmrt.2024.01.235