• 제목/요약/키워드: Mg alloy composites

검색결과 51건 처리시간 0.02초

하이브리드 Mg 복합재료의 진동 감쇠능 및 고온 특성평가 (High temperature and damping properties of squeeze cast Mg hybrid Metal Matrix Composites.)

  • 장재호;김봉룡;최일동;조경목;박익민
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.143-146
    • /
    • 2002
  • Mg alloy is the lightest material of structural materials and is noticed for lightweight automotive parts because of excellent castability, superior ductility and damping capacity than Al alloy. But Mg Alloy is poor corrosion resistance and high temperature creep properties. In this study, Mg Matrix Composites were fabricated by squeeze casting method to improve high temperature creep properties and damping capacity. Hybrid Mg composites reinforced with Alborex, graphite particle, and SiCp was improved creep properties and damping capacity compared with Mg alloy. Compared to the length ($9\mu\textrm{m}, 27\mu\textrm{m}, 45\mu\textrm{m} etc.$), Hybrid Mg composites reinforced with SiCp, one of the most superior of the length and Alborex were more superior than those reinforced with graphite particle and Alborex in mechanical properties, creep characteristics, and damping capacity, etc.

  • PDF

용탕교반법에 의한 SiC 입자강화 Mg기 복합재료의 기계적 특성 (Mechanical Properties of SiC Particulate Reinforced Mg Matrix Composites Fabricated by Melt Stirring Method)

  • 임석원;장융랑;박용진
    • 한국주조공학회지
    • /
    • 제13권5호
    • /
    • pp.441-449
    • /
    • 1993
  • SiC particulate reinforced magnesium matrix composites were fabricated by melt stirring method. The effet of several factors on mechanical properties and the efficiency of melt stirring method from the viewpoint of these properties were investigated. The tensile strength increased and the elongation decreased with decrease of the particle size or the increase of the paticulate volume fraction for pure magnesium matrix and Mg-5%Zn alloy matrix composites. A longer stirring time improved the tensile strength of these composites. The tensile strength of Mg-5%Ca alloy matrix composites which shows no uniform paticulate distribution was a little lower than that of matrix alloy. Rapid solidification rate is preferred for the improved tensile strength of these composites. The pure magnesium matrix and Mg-5%Zn alloy matrix composites have tensile strength of about 400MPa. This value agrees with the tensile strength of some magnesium matrix composites fabricated by liquid infiltration method or powder metallurgy method at the same volume fraction of reinforcements of whisker or particle. Therefore, the melt stirring method which has the advantages of simple process is considered to be efficient in fabricating magnesium matrix composites.

  • PDF

AlZnMg-합금의 용융산화에 의한 $Al_2O_3$-복합재료의 형성 (Formation of $Al_2O_3$-Composites by the Melt Oxidation of an AlZnMg-alloy)

  • 김일수;김상호;강정윤
    • 한국세라믹학회지
    • /
    • 제33권9호
    • /
    • pp.985-994
    • /
    • 1996
  • The initiation and growth of $\alpha$-Al2O3/metal composites by the directed oxidation of molten commercial AlZnMg-alloy at 1223-1423K were investigated. Spontaneous bulk growth did not occur on the alloy alone. but the uniform initiation and growth of the composite were obtained by putting a thin layer of SiO2 particles on the surface of the alloy. Without SiO2 the external surface of the oxide layer was convered by MgO and MgAl2O4. But with the SiO2 reaction initiate the porous ZnO layers were found on the growth surface. The higher process temperature yielded a lower metal content. The oxidation product of $\alpha$-Al2O3 was found to be oriented with c-axis parallel to th growth direction. The growth rates increased with temperature and the apparent activation energy was 111.8 kJ/mol.

  • PDF

무가압침투법에 의한 $SiC_p/Al$ 복합재료의 제조 및 기계적 특성 (Fabrication and Mechanical Properties of $SiC_p/Al$ Composites by Pressureless Infiltration Technique)

  • 진훈구;오명석;김영식
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.74-81
    • /
    • 2001
  • The infiltration behavior of molten Al-alloy, microstructures, hardness, and the interfacial reactions of $SiC_p/Al$ composites fabricated by the pressureless infiltration technique were investigated. It was made clear that both the weight fraction of SiC reinforcement and additive Mg content considerably influenced on the infiltration behavior of the molten Al-alloy matrix. Complete infiltration of molten Al-alloy achieved under the conditions that weight fraction of SiC content is more than 30wt%, and additive Mg content is more than 9wt%. Interfacial region of Al-alloy matrix and SiC reinforcement phase, $Mg_2Si$ was formed by the reaction between Mg and SiC. Another reaction product AlN was also formed by the reaction between Al-alloy matrix and gas atmosphere nitrogen.

  • PDF

Al-합금의 단열섬유판 반응침투에 의한 $Al_2O_3$-세라믹스의 형성 (Formation of $Al_2O_3$-Ceramics by Reactive Infiltration of Al-alloy into Insulation Fiber Board)

  • 김일수
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.483-490
    • /
    • 1997
  • Al2O3/metal composites were fabricated by oxidation and reaction of molten Al-alloy into two types of commercial Al2O3-SiO2 fibrous insulation board. The growth rate, composition and microstructure of these materials were described. An AlZnMg(7075) alloy was selected as a parent alloy. Mixed polycrystalline fiber and glass phase fiber were used as a filler. The growth surface of an alloy was covered with and without SiO2. SiO2 powder was employed as a surface dopant to aid initial oxidation of Al-alloy. Al-alloy, SiO2, fiber block and growth inhibitor CaSiO3 were packed sequentially in a alumina crucible and oxidized in air at temperature range 90$0^{\circ}C$ to 120$0^{\circ}C$. The growth rate of composite layer was calculated by measuring the mass increasement(g) per unit surface($\textrm{cm}^2$). XRD and optical microscope were used to investigate the composition and phase of composites. The composite grown at 120$0^{\circ}C$ and with SiO2 dopant showed rapid growth rate. The growth behavior differed a little depending on the types of fiber used. The composites consist of $\alpha$-Al2O3, Al, Si and pore. The composite grown at 100$0^{\circ}C$ exhibited better microstructure compared to that grown at 120$0^{\circ}C$.

  • PDF

Rheo-compocasting 및 Hot Pressing에 의하여 제조한 $Al-Si-Mg/Al_2O_3$ 단섬유강화 복합재료의 조직 및 인장특성 (Microstructures and Tensile Properties of $A_2O_3$ Short Fiber/Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Pressing)

  • 곽현만;이학주
    • 한국주조공학회지
    • /
    • 제13권6호
    • /
    • pp.547-554
    • /
    • 1993
  • Aluminum alloy matrix composites reinforced with various amounts of $Al_2O_3$ short fibers have been produced by rheo-compocasting accompanied by hot pressing. When composites reinforced with fibers are produced by rheo-compocasting, S-L process is the most effective method for homogeneous dispersion of fibers. A sound composites with the improved orientation(3 dimension${\rightarrow}$2 dimension) of the fibers and increased volume fraction of them have been fabricated through the hot pressing of the casted composites. Fibers are broken down when rheo-compocasting, hot pressing, and $T_6$ treating. Among them fibers are broken down most heavily in the hot pressing. And even in the case of the composite reinforced with 30 vol% fibers, which showed the hardest fiber break down, aspect ratio(11.6) is higher than critical aspect ratio(10.7). The fiber strengthening effect in the composites has showed upto 573K. As the test temperature increases to the range of 573K, the effect has been higher. The fracture of composites is controlled by fiber from room temperature to 473K, but the fracture of composites is controlled by interface between fiber and matrix alloy above 473K.

  • PDF

무가압함침법에 의한 $Al_2O_{3p}$/AC8A 복합재료의 제조 및 특성 (Fabrication and Characteristics of $Al_2O_{3p}$/AC8A Composites by Pressureless Infiltration Process)

  • 김재동;고성위;정해용
    • Composites Research
    • /
    • 제13권6호
    • /
    • pp.1-8
    • /
    • 2000
  • 무가압함침법에 의한 $Al_2O_{3p}$/AC8A 복합재료의 제조와, 제조법과 관련하여 부가적인 Mg의 첨가와 강화상의 부피분율이 $Al_2O_{3p}$/AC8A복합재료의 기계적 성질과 마모저항에 미치는 영향을 조사하였다. 강화상 입자와 기지재료의 일부를 분말로 조합한 혼합분말 속으로 기지금속을 자발적으로 침투시켜 부피분율이 20~40%인 $Al_2O_{3p}$/AC8A 복합재료를 제조할 수 있었다. 그러나 강화상의 부피분율이 40%인 복합재료의 경우 기공율의 상승으로 복합재료의 강도는 저하하였다. Mg의 첨가량이 5~7wt% 일 때 가장 높은 강도를 나타냈으며, 경도는 Mg 첨가량의 증가에 따라 점진적으로 상승하였다. $Al_2O_{3p}$/AC8A복합재료는 저속에서 기지재료에 비해 내마모성이 저하하였으나, 고속에서는 AC8A합금에 비해 약 5.5배의 우수한 내마모성을 나타냈다. 마모기구의 관찰에 의해 부피분율 20% $Al_2O_{3p}$/AC8A복합재료의 경우 연삭마모가 주된 마모기구임을 알 수 있었으며, 부피분율 40% $Al_2O_{3p}$/AC8A복합재료는 높은 기공율로 인한 마모 가중으로 저속에서도 경미한 응착마모가 관찰됐고 마찰 속도가 증가함에 따라 격심한 마모로 진행되었다.

  • PDF

Rheo-compocasting 및 열간압출에 의하여 제조한 Al-Si-Mg / SiC 입자강화 복합재료의 조직 및 기계적 특성 (Microstructures and Mechanical Properties of SiCp/ Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Extrusion)

  • 이학주;홍준표
    • 한국주조공학회지
    • /
    • 제12권4호
    • /
    • pp.335-345
    • /
    • 1992
  • Aluminum alloy matrix composites reinforced with various amounts of SiC particles have been produced by rheo-compocasting followed by hot extrusion. A relatively uniform distribution of SiC particles in the composites was obtained. The amounts of pore and SiC particles cluster were relatively small in the composites. Particle free zones were observed in the hot extruded composites when the amount of SiC particles was less than 20 vol%. However, the width of particle free zone decreases with the increase of SiC particle content. Eutectic Si phase play an important role for improving bonding between SiC particle and matrix. Tensile and yield strength increased with the increase of SiC particle content. the strenthening effect of SiC particle addition was effective even at relatively high temperature of 573 K.

  • PDF

Squeeze Cast한 Al기지 금속복합재료의 응고거동 (Solidification Characteristics of Squeeze Cast Al Alloy Composites)

  • 김대업;김진;박익민
    • 한국주조공학회지
    • /
    • 제11권3호
    • /
    • pp.208-216
    • /
    • 1991
  • The solidification behavior of the squeeze cast composites of aluminum alloys reinforced with boron fiber($100{\mu}m$) and silicon carbide fibers($140{\mu}m$ and $15{\mu}m$) were investigated. Al-4.5wt%Cu and Al-l0wt%Mg were chosen for the matrix phase of the composites. In the squeeze cast specimen with high thermal difference between fiber and melt, the average secondary dendrite arm spacing(DAS) in reinforced alloy is smaller than that in unreinforced alloy. It was also observed that primary ${\alpha}$ and non-equilibrium eutectic, which seems to be penetrated and solidified at the final stage of the solidification of the matrix, are irregularly distributed around fibers. It is considered that cold fibers serve as heterogeneous nucleation site. While in the remelted and resolidified specimen without temperature difference, the DAS was not changed with reinforcement and microstructure reveals non-equilibrium eutectic with relatively uniform thickness around fibers. It might be evident the nucleation starts at interfiber region. Microsegregation decreases with the decrease in cooling rate and with reinforcement in the as-squeeze cast specimen. Al-10wt% Mg alloy shows less microsegregation than Al-4.5wt%Cu alloy.

  • PDF