• 제목/요약/키워드: Mg Alloy

검색결과 1,127건 처리시간 0.025초

Al-Si-Mg 합금의 산소 및 황화수소 환경에서의 고온부식 특성 (High Temperature Corrosion Characteristics of Al-Si-Mg Alloy in O2 and H2S/H2 Environments)

  • 이영환;손영진;이병우
    • 동력기계공학회지
    • /
    • 제21권2호
    • /
    • pp.14-19
    • /
    • 2017
  • The corrosion characteristics of Al-Si-Mg alloy were investigated in $O_2$ and $H_2S/H_2$ environments at high temperature. The weight gain and the reaction rate constant of the Al-Si-Mg alloy were measured in the oxygen and hydrogen sulfide environments at 773K. The weight gain of Al-Si-Mg alloy was showed parabolic increase in the oxygen and hydrogen sulfide environments. The reaction rate constants were confirmed to be $1.45{\times}10^{-4}mg^2cm^{-4}sec^{-2}$ in the oxygen environment and $6.19{\times}10^{-4}mg^2cm^{-4}sec^{-2}$ in the hydrogen sulfide environment respectively. As a result of XPS analysis on the specimen surface, $Al_2O_3$ and MgO compounds were detected in oxygen environment and $Al_2(SO_4)_3$ sulfate was detected in the hydrogen sulfide environment. Corrosion rate of Al-Si-Mg alloy was about 4.3 times faster in hydrogen sulfide environment than oxygen environment.

Solidification Cracking Susceptibility of Al-Mg-Si Alloy Laser Welds

  • Yoon, J.W.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.42-46
    • /
    • 2002
  • The solidification cracking susceptibilities of Al-Mg-Si alloy laser welds were assessed using the self-restraint tapered specimen crack test. The cracking susceptibility of 6061 and 6082 Al-Mg-Si alloy laser welds was substantially reduced when the filler wire containing high Si such as Al-12 wt.% Si (4047A) was used. The amount of eutectic was observed to affect the solidification cracking of Al-Mg-Si alloy laser welds. Abundant eutectic seems to heal the cracking and reduces the cracking susceptibility, while an initial increase in eutectic liquid leads to the increased cracking tendency.

  • PDF

기계적인 합금화에 의한 Mg-18wt.%Ni 수소저장합금의 개발 (Development of Mg-18wt.%Ni-Hydrogen-Storage Alloy by Mechanical Alloying)

  • 송명엽;안동수;권익현;안효준
    • 한국재료학회지
    • /
    • 제10권1호
    • /
    • pp.15-20
    • /
    • 2000
  • 기계적으로 합금처리한 Mg-18wt.%Ni 혼합물의 수소저장특성이 조사되었다. 1h, 3h, 그리고 6h 동안 기계적으로 합금처리한 혼합물들 중에서 6h동안 기계적으로 합금처리한 혼합물(MA 6h sample)이 가장 좋은 활성화, 수소화물 형성.분해 특성을 보인다. 수소화물 형성.분해 cycling을 시킴에 따라 $Mg_2$Ni상이 형성된다. MA 6h sample은 비교적 쉽게 활성화되며, 순수한 Mg나 Mg-10wt.%Ni 합금보다 수소화물 형성속도가 높으나, $Mg_2$Ni 합금보다는 수소화물 형성속도가 약간 낮다. MA 6h sample은 $Mg_2$Ni 합금에 비해 낮은 수소화물 분해속도를 보이지만, 순수한 Mg나 Mg-25wt.%Ni 합금보다는 높은 수소화물 분해속도를 보인다. MA 6h sample은 순수한 Mg나 다른 합금들보다 큰 수소저장용량을 가지고 있다.

  • PDF

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

Effect of Hot-forging on NiTi Shape Memory Alloy Fibers Reinforced Mg Alloy Composite

  • Guo, Qi;Li, Gang;Tang, Renjian;Yan, Biao
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.846-847
    • /
    • 2006
  • The composite used in this paper was prepared by hot-pressing ball-milled Mg alloy powders, in which NiTi shape memory alloy fibers in a row were sandwiched. The microstructure and property were examined. It is shown that the composite consisted of a homogenous matrix with uniformly distributed NiTi shape memory alloy fibers, recrystallization took place in the Mg alloy matrix which was subjected to plastic deformation an adequate bonding formed between the matrix and fibers; the density and tensile strength of the composite increased after the hot-forging; the hot-forging process is capable of improving properties of the composite.

  • PDF

냉각판으로 제조된 Al-Zn-Mg-Cu계 반응고 알루미늄 합금의 RRA 처리 (RRA Treatment of Semi-Solid Al-Zn-Mg-Cu Al Alloy Fabricated by Cooling Plate)

  • 김대환;심성용;김영화;임수근
    • 한국주조공학회지
    • /
    • 제29권6호
    • /
    • pp.265-269
    • /
    • 2009
  • The optimum RRA heat treating conditions and SCC (stress corrosion cracking) resistance of semi-solid Al-Zn-Mg-Cu alloy fabricated by inclined cooling plate were compared with those of conventional mould cast alloys. The non-stirring method characterized by using a cooling plate can effectively eliminate dendritic structure and form a fine globular semisolid microstructure in as-cast Al-Zn-Mg-Cu alloy and the SCC resistance of semi-solid Al-Zn-Mg-Cu alloy was higher than that of conventional mold cast alloy. Also, after retrogressed treatment at RRA heat treatment of semi-solid Al-Zn-Mg-Cu alloy, retrogressed treatment time has increased more than 10 minutes at $180^{\circ}C$ to recovery the T6 heat treatment strength.

직접가압주조한 Al-5%Ni-5%Mg-(Mm)합금의 조직 및 기계적 성질에 미치는 가압력의 영향 (Effect of Pressure on Microstructures and Mechanical Properties in Al-5%Ni-5%Mg-(Mm) Alloy Manufactured by Direct Squeeze Casting)

  • 우기도;정동석;황인오;김석원
    • 한국주조공학회지
    • /
    • 제21권2호
    • /
    • pp.127-134
    • /
    • 2001
  • Misch metal (rare earth element, Ce, La, Nd, Pr) which has large influence on high-temperature stability and toughness was added to the Al-5%Ni-5%Mg alloy, and squeeze casting was used for Al-5%Ni-5%Mg-(Mm) alloys. The effect of applied pressure and misch metal additions on mechanical properties in Al-5%Ni-5%Mg alloy by direct squeeze casting has been investigated. The applied pressure were 0 MPa(gravity casting), 25, 50 and 75 MPa. Squeeze-cast Al-5%Ni-5%Mg-(Mm) alloys had better mechanical properties than those of non-pressurized cast alloys because of the increased cooling rate by the application of pressure during solidification. By the addition of misch metal in Al-5%Ni-5%Mg alloy, better combination of strength and elongation was obtained. The addition of 0.3%Mm in Al-5%Ni-5%Mg alloy improved the heat resistant property due to the formation of fine eutectic phases.

  • PDF

등온 시효한 Mg-Al-(Zn) 합금에서 불연속 석출물의 경도와 미세조직에 미치는 Zn 첨가의 영향 (Effects of Zn Addition on Hardness and Microstructure of Discontinuous Precipitates in Isothermally Aged Mg-Al-(Zn) Alloys)

  • 전중환
    • 열처리공학회지
    • /
    • 제35권4호
    • /
    • pp.177-184
    • /
    • 2022
  • The present study aims to investigate the influence of Zn addition on hardness and microstructural characteristics of discontinuous precipitates (DPs) formed by isothermal aging in Mg-9%Al and Mg-9%Al-1%Zn alloys. To obtain large DPs volume fractions in the microstructure, the alloy specimens were solution-treated at 688 K for 24 h followed by water quenching, and then aged at 413 K for 48 h. The aged Mg-9%Al-1%Zn alloy had higher DPs content than the Mg-9%Al alloy, indicating that the Zn addition plays a beneficial role in enhancing age-hardening response. The DPs in the Zn-containing alloy possessed the higher hardness than those of the Zn-free alloy. Microstructural examination revealed that the increased hardness of the DPs resulting from the Zn addition is closely associated with the lower α-(Mg)/β(Mg17Al12) interlamellar spacing and the higher volume fraction of β phase layer of the DPs.

In-Situ SEM Observation and DIC Strain Analysis for Deformation and Cracking of Hot-Dip ZnMgAl Alloy Coating

  • Naoki Takata;Hiroki Yokoi;Dasom Kim;Asuka Suzuki;Makoto Kobashi
    • Corrosion Science and Technology
    • /
    • 제23권2호
    • /
    • pp.113-120
    • /
    • 2024
  • An attempt was made to apply digital image correlation (DIC) strain analysis to in-situ scanning electron microscopy (SEM) observations of bending deformation to quantify local strain distribution inside a ZnMgAl-alloy coating in deformation. Interstitial-free steel sheets were hot-dipped in a Zn-3Mg-6Al (mass%) alloy melt at 400 ℃ for 2 s. The specimens were deformed using a miniature-sized 4-point bending test machine inside the SEM chamber. The observed in situ SEM images were used for DIC strain analysis. The hot-dip ZnMgAl-alloy coating exhibited a solidification microstructure composed of a three-phase eutectic of fine Al (fcc), Zn (hcp), and Zn2Mg phases surrounding the primary solidified Al phases. The relatively coarsened Zn2Mg phases were locally observed inside the ZnMgAl-alloy coating. The DIC strain analysis revealed that the strain was localized in the primary solidified Al phases and fine eutectic microstructure around the Zn2Mg phase. The results indicated high deformability of the multi-phase microstructure of the ZnMgAl-alloy coating.

Al-Mg-Si 단조품의 시효 모델 (Aging model for Al-Mg-Si forged part)

  • 권용남;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.307-310
    • /
    • 2005
  • Ageing behavior of the Al-Mg-Si alloy was modeled for the use of optimization of Al forging product. Typical precipitates of Al-Mg-Si alloy are a wide variety of metastable phases (e.g. GP zones, $\beta',\beta'$). These rod shaped particles take a role to hinder the dislocation movement. The precipitation sequence in Al-Mg-Si alloys is quite complex and the strength of precipitate particles differs with the ageing condition. In the present study, the ageing behavior of Al-Mg-Si alloy was investigated by using an industrial grade Al 6061 alloy forged product, which was a perform for an Al impeller for turbo charger. The precipitate hardening models by Esmaeili's approach were used for the analysis of ageing behavior.

  • PDF