DOI QR코드

DOI QR Code

Effects of Zn Addition on Hardness and Microstructure of Discontinuous Precipitates in Isothermally Aged Mg-Al-(Zn) Alloys

등온 시효한 Mg-Al-(Zn) 합금에서 불연속 석출물의 경도와 미세조직에 미치는 Zn 첨가의 영향

  • Jun, Joong-Hwan (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 산업소재공정연구부문)
  • Received : 2022.06.23
  • Accepted : 2022.07.11
  • Published : 2022.07.30

Abstract

The present study aims to investigate the influence of Zn addition on hardness and microstructural characteristics of discontinuous precipitates (DPs) formed by isothermal aging in Mg-9%Al and Mg-9%Al-1%Zn alloys. To obtain large DPs volume fractions in the microstructure, the alloy specimens were solution-treated at 688 K for 24 h followed by water quenching, and then aged at 413 K for 48 h. The aged Mg-9%Al-1%Zn alloy had higher DPs content than the Mg-9%Al alloy, indicating that the Zn addition plays a beneficial role in enhancing age-hardening response. The DPs in the Zn-containing alloy possessed the higher hardness than those of the Zn-free alloy. Microstructural examination revealed that the increased hardness of the DPs resulting from the Zn addition is closely associated with the lower α-(Mg)/β(Mg17Al12) interlamellar spacing and the higher volume fraction of β phase layer of the DPs.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1049912).

References

  1. J. Song, J. She, D. Chen, and F. Pan : J. Magnes. Alloy. 8 (2020) 1. https://doi.org/10.1016/j.jma.2020.02.003
  2. S. Li, X. Yang, J. Hou, and W. Du : J. Magnes. Alloy. 8 (2020) 78. https://doi.org/10.1016/j.jma.2019.08.002
  3. J. Zhang, R. J. Perez, and E. J. Lavernia : J. Mater. Sci. 28 (1993) 2395. https://doi.org/10.1007/BF01151671
  4. J. Hao, J. Zhang, H. Wang, W. Cheng, and Y. Bai : J. Mater. Res. Tech. 19 (2022) 1650. https://doi.org/10.1016/j.jmrt.2022.05.153
  5. E. Gerashi, M. Asadollahi, R. Alizadeh, and R. Mahmudi : Mater. Sci. Eng. A 843 (2022) 143127. https://doi.org/10.1016/j.msea.2022.143127
  6. H. Xue, S. Liu, W. Xie, Y. Zhou, J. Peng, H. Pan, D. Zhang, and F. Pan : Mater. Char. 187 (2022) 111874. https://doi.org/10.1016/j.matchar.2022.111874
  7. D. He, Y. Li, Y. Zheng, X. Yue, Y. Wu, X. Xue, H. Yu, W. Li, and Y. Li : J. Alloy. Compd. 887 (2021) 161317. https://doi.org/10.1016/j.jallcom.2021.161317
  8. J. H. Zhang, K. B. Nie, K. K. Deng, X. Z. Han, and Z. D. Wang : Mater. Sci. Eng. A 838 (2022) 142562. https://doi.org/10.1016/j.msea.2021.142562
  9. Z. Zareian, M. Emamy, M. Malekan, H. Mirzadeh, W. J. Kim, and A. Bahmani : Mater. Sci. Eng. A 774 (2020) 138929. https://doi.org/10.1016/j.msea.2020.138929
  10. X. Hua, Q. Yang, D. Zhang, F. Meng, C. Chen, Z. You, J. Zhang, S. Lv, and J. Meng : J. Mater. Sci. Tech. 53 (2020) 174. https://doi.org/10.1016/j.jmst.2020.04.030
  11. K. B. Nie, X. J. Wang, K. Wu, M. Y. Zheng, and X. S. Hu : Mater. Sci. Eng. A 528 (2011) 7484. https://doi.org/10.1016/j.msea.2011.06.072
  12. X. J. Wang, S. M. Zhu, E. A. Easton, M. A. Gibson, and G. Savage : Int. J. Cast Met. Res. 27 (2014) 161. https://doi.org/10.1179/1743133613Y.0000000091
  13. J. B. Clark : Acta Metall. 16 (1968) 141. https://doi.org/10.1016/0001-6160(68)90109-0
  14. C. H. Caceres, C. J. Davidson, J. R. Griffiths, and C. L. Newton : Mater. Sci. Eng. A 325 (2002) 344. https://doi.org/10.1016/S0921-5093(01)01467-8
  15. C. R. Hutchinson, J. F. Nie, and S. Gorsse : Metall. Mater. Trans. A 36 (2005) 2093. https://doi.org/10.1007/s11661-005-0330-x
  16. M. X. Zhang and P. M. Kelly : Scr. Mater. 48 (2003) 647. https://doi.org/10.1016/S1359-6462(02)00555-9
  17. J. D. Robson : Acta Mater. 61 (2013) 7781. https://doi.org/10.1016/j.actamat.2013.09.017
  18. K. N. Braszczynska-Malik : J. Alloy. Compd. 477 (2009) 870. https://doi.org/10.1016/j.jallcom.2008.11.008
  19. S. Takeshita, C. Watanabe, R. Monzen, and S. Saikawa : J. Jpn. Inst. Light Met. 64 (2014) 470. https://doi.org/10.2464/jilm.64.470
  20. K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani, and S. Ikeno : Mater. Trans. 52 (2011) 340. https://doi.org/10.2320/matertrans.MB201021
  21. S. Celotto : Acta Mater. 48 (2000) 1775. https://doi.org/10.1016/S1359-6454(00)00004-5
  22. J. G. Han and J. H. Jun : J. Kor. Soc. Heat Treat. 32 (2019) 249.
  23. J. H. Jun : J. Alloy. Compd. 73 (2017) 237. https://doi.org/10.1016/j.jallcom.2017.07.147
  24. J. H. Jun : J. Kor. Soc. Heat Treat. 34 (2021) 287. https://doi.org/10.12656/JKSHT.2021.34.6.287
  25. M. M. Avdesian and H. Baker : Magnesium and Magnesium Alloys, ASM International, Materials Park, OH, 1999, p. 15.
  26. Y. S. Wang, Q. D. Wang, C. J. Ma, W. J. Ding, and Y. P. Zhu : Mater. Sci. Eng. A 342 (2003) 178. https://doi.org/10.1016/S0921-5093(02)00315-5
  27. M. D. Nave, A. K. Dahle, and D. H. StJohn : Magnesium Technology, TMS, 2000, p. 243.
  28. M. D. Nave, A. K. Dahle, and D. H. StJohn : Magnesium Technology, TMS, 2000, p. 233.
  29. D. Duly, Y. Brechet, and B. Chenal : Acta Metall. 40 (1992) 2289. https://doi.org/10.1016/0956-7151(92)90147-7
  30. C. Q. Liu, H. W. Chen, N. C. Wilson, and J. F. Nie : Scr. Mater. 163 (2019) 91. https://doi.org/10.1016/j.scriptamat.2019.01.001
  31. C. Zener : Trans. AIME 167 (1946) 550.
  32. M. Frebel and K. Behler : Metall. Trans. A 8 (1977) 621. https://doi.org/10.1007/BF02676985