• Title/Summary/Keyword: Mg $B_2$ powder

Search Result 266, Processing Time 0.022 seconds

Effect of boron milling on phase formation and critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Park, S.D.;Kim, C.S.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.18-24
    • /
    • 2019
  • This study was carried out to investigate the effect of milling of boron (B), which is one of raw materials of $MgB_2$, on the critical current density ($J_c$) of $MgB_2$. B powder used in this study is semi-amorphous B (Pavezyum, Turkey, 97% purity, 1 micron). The size of B powder was reduced by planetary milling using $ZrO_2$ balls (a diameter of 2 mm). The B powder and balls with a ratio of 1:20 were charged in a ceramic jar and then the jar was filled with toluene. The milling time was varied from 0 to 8 h. The milled B powders were mixed with Mg powder in the composition of (Mg+2B), and the powder mixtures were uniaxially pressed at 3 tons. The powder compacts were heat-treated at $700^{\circ}C$ for 1 h in flowing argon gas. Powder X-ray diffraction and FWHM (Full width at half maximum) were used to analyze the phase formation and crystallinity of $MgB_2$. The superconducting transition temperature ($T_c$) and $J_c$ of $MgB_2$ were measured using a magnetic property measurement system (MPMS). It was found that $B_2O_3$ was formed by B milling and the subsequent drying process, and the volume fraction of $B_2O_3$ increased as milling time increased. The $T_c$ of $MgB_2$ decreased with increasing milling time, which was explained in terms of the decreased volume fraction of $MgB_2$, the line broadening of $MgB_2$ peaks and the formation of $B_2O_3$. The $J_c$ at 5 K increased with increasing milling time. The $J_c$ increase is more remarkable at the magnetic field higher than 3 T. The $J_c$ at 5 K and 4 T was the highest as $4.37{\times}10^4A/cm^2$ when milling time was 2 h. The $J_c$ at 20 K also increased with increasing milling time. However, The $J_c$ of the samples with the prolonged milling for 6 and 8 h were lower than that of the non-milled sample.

Superconducting Properties and Phase Formation of MgB2 Superconductors Prepared by the Solid State Reaction Method using MgB4 and Mg Powder (MgB4와 Mg 분말을 원료로 사용하여 고상반응법으로 제조한 MgB2 초전도체의 상생성과 초전도 특성)

  • Jeong, Hyeondeok;Kim, Chan-Joong;Jun, Byung-Hyuk;Kim, Seolhyang;Park, Hai-Woong
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.344-349
    • /
    • 2015
  • $MgB_2$ bulk superconductors are synthesized by the solid state reaction of ($MgB_4$+xMg) precursors with excessive Mg compositions (x=1.0, 1.4, 2.0 and 2.4). The $MgB_4$ precursors are synthesized using (Mg+B) powders. The secondary phases ($MgB_4$ and MgO) present in the synthesized $MgB_4$ are removed by $HNO_3$ leaching. It is found that the formation reaction of $MgB_2$ is accelerated when Mg excessive compositions are used. The magnetization curves of $Mg_1+_xB_2$ samples show that the transition from the normal state to the superconducting state of the Mg excessive samples with x=0.5 and x=0.7 are sharper than that of $MgB_2$. The highest $J_c-B$ curve at 5 K and 20 K is achieved for x=0.5. Further addition of Mg decreases the $J_c$ owing to the formation of more pores in the $MgB_2$ matrix and smaller volume fraction of $MgB_2$.

$MgB_2$ Sheets using Mixture of Mg and B Powders by Powder Roll Compaction (Mg과 B 혼합분말을 이용하여 분말압연 공정으로 제조된 $MgB_2$ 초전도 판재연구)

  • Chung, K.C.;Chang, S.H.;Sinha, B.B.;Kim, J.H.;Dou, S.X.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.184-188
    • /
    • 2012
  • $MgB_2$ superconducting sheets have been fabricated by powder rolling method using mixture of Mg and B powders. Sheet-type $MgB_2$ bulk samples of ~10 mm width and 50-100 mm long were squeezed out after compacted by two rotating rolls of 130 mm diameter with gap distance of 0.5 mm and speed of ~40 cm/min (~1 rpm). The nominal composition of Mg, which is ductile metal, was added up to 30% to facilitate forming the $MgB_2$ sheets. The annealed samples at $900^{\circ}C$ and 3 hrs showed superconducting transition temperature of ~32 K and critical current densities at zero fields were ${\sim}10^5A/cm^2$ at 5 K and ${\sim}5{\times}10^4A/cm^2$ at 20 K.

Enhancement of the Critical Current Density of $MgB_2$ Prepared using Mechanically Milled and Glycerin Treated Boron Powder (기계적 밀링 및 글리세린 처리된 보론 분말을 사용하여 제조된 $MgB_2$의 임계전류밀도 향상)

  • Jun, Byung-Hyuk;Kim, Yi-Jeong;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.40-44
    • /
    • 2008
  • A combined process of a mechanical ball milling and liquid glycerin ($C_{3}H_{8}O_3$) treatment of boron (B) powder has been conducted to enhance the superconducting properties of $MgB_2$. The individual aims of the mechanical milling and the glycerin treatment were to reduce the grain size of the $MgB_2$ and to achieve homogeneous carbon (C) incorporation into the $MgB_2$, respectively. Four kinds of B powders of as-received, glycerin treated, 2 h milled, and 2 h milled + glycerin treated were prepared. $MgB_2$ bulks were fabricated by in situ process using the prepared B powders. The mechanical ball milling was effective for a grain refinement, and a lattice disorder was easily achieved by glycerin addition. It was found that the critical current density ($J_c$) values were enhanced in the samples with milled B or glycerin treated B only. In the $MgB_2$ bulk prepared with both milled and glycerin treated B, the $J_c$ was further increased due to a higher grain boundary density and a greater C substitution.

  • PDF

Synthesis of $MgB_2$ powders by ultrasonic spray pyrolysis (초음파 분무열분해를 이용한 $MgB_2$ 분말 합성)

  • Park, S.C.;Lim, Y.J.;Kang, S.G.;Chung, J.K.;Kim, C.J.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • Spherical $MgB_2$ powders was synthesized with the ultrasonic spray pyrolysis(USP) process using aqueous solutions of boron and magnesium ion. The properties of synthesized $MgB_2$ powder were characterized by XRD, SEM and EDS. A small amount of MgO was detected as the secondary phase out of the synthesized powder and the ratios of $MgB_2$ to MgO increased with increasing furnace temperature. The particle size and morphology of $MgB_2$ powder were investigated with varying molar concentration of the boron and magnesium solution and furnace temperature between $600^{\circ}C$ and $1000^{\circ}C$ in $Ar/H_2$. The average particle size of $MgB_2$ showed narrow distribution ranging from 300nm to 400nm. The morphology of particles exhibited mostly spherical shapes and uniform distribution.

Fabrication of $MgB_2$ tape with metal powder addition (금속분말이 첨가된 $MgB_2$ 선재의 제조 및 특성)

  • Ko, Jae-Woong;Yoo, Jai-Moo;Kim, Young-Kuk;Chung, Kook-Chae;Yoo, Sang-Im;Wang, Xio Lin;Dou, Shi Xue
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • The $MgB_2$ tapes with several metal powder addition were fabricated by PIT method with or without heat treatment. The $J_c$ value of $5.600A/cm^2$ and $16.000A/cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol % of Cu added $MgB_2$ tape without heat treatment respectively. The $J_c$ value of $8.000A/cm^2$ and $35,000A/cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol. % of Al added $MgB_2$ tape with heat treatment, respectively. The $J_c-B$ curve shows enhancement in $J_c$ under magnetic field. which suggests enhancement in workability and grain connectivity with several metal powder addition.

Superconducting Properties of Mg(B1-xCx)2 Bulk Synthesized Using Magnesium and Glycerin-treated Boron Powder (마그네슘과 글리세린 처리한 붕소 분말로 합성한 Mg(B1-xCx)2의 초전도 특성)

  • Kim, Yi-Jeong;Jun, Byung-Hyuk;Park, Soon-Dong;Tan, Kai Sin;Kim, Bong-Goo;Sohn, Jae-Min;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.182-187
    • /
    • 2008
  • Carbon was known to be one of effective additives which can improve the flux pinning of $MgB_2$ at high magnetic fields. In this study, glycerin $(C_3H_8O_3)$ was selected as a chemical carbon source for the improvement of critical current density of $MgB_2$. In order to replace some of boron atoms by carbon atoms, the boron powder was heat-treated with liquid glycerin. The glycerin-treated boron powder was mixed with an appropriate amount of magnesium powder to $MgB_2$ composition and the powder pallets were heat treated at $650^{\circ}C\;and\;900^{\circ}C$ for 30 min in a flowing argon gas. It was found that the superconducting transition temperature $(T_c)$ of $Mg(B_{1-x}C_x)_2$ prepared using glycerin-treated boron powder was 36.6 K, which is slightly smaller than $T_c$(37.1 K) of undoped $MgB_2$. The critical current density $(J_c)$ of $Mg(B_{1-x}C_x)_2$ was higher than that of undoped $MgB_2$ and the $T_c$ improvement effect was more remarkable at higher magnetic fields. The $T_c$, decrease and $J_c$ increase associated with the glycerin treatment for boron powder was explained in terms of the carbon substitution to boron site.

Influence of Magnesium Powder and Heat Treatment on the Superconducting Properties of $MgB_2/Fe$ Wires ($MgB_2/Fe$ 선재의 초전도성에 대한 열처리 조건과 Mg 분말의 영향)

  • Tan, Tan Kai;Kim, N.K.;Kim, Y.I.;Jun, B.H.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.1-4
    • /
    • 2007
  • The most common technique to fabricate $MgB_2$ superconducting wire is by powder-in-tube (PIT) technique. Therefore, the starting powder for the processing of $MgB_2$ superconductors is an important factor influencing the superconducting properties and performance of the conductors. In this study, the influence of magnesium precursor powders and annealing temperatures on the transition temperatures ($T_c$) and critical current densities ($J_c$) of $MgB_2/Fe$ wires was investigated. All the $MgB_2/Fe$ wires were fabricated by in situ PIT process. It was found that higher $J_c$ was obtained for $MgB_2$ wires with smaller particle size of magnesium precursor powders. The $J_c$ also increases with decreasing annealing temperatures.

  • PDF

Effects of Nano FexC Addition on Superconducting Properties of MgB2 (MgB2 초전도 특성에 대한 나노 FexC 첨가 효과)

  • Lee, Dong-Gun;Lee, Ji-Hyun;Jun, Byung-Hyuk;Park, Soon-Dong;Uhm, Young-Rang;Park, Hai-Woong;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.146-150
    • /
    • 2012
  • The effects of nano $Fe_xC$ addition to superconducting properties of $in$ $situ$ processed $MgB_2$ superconductors was examined. 0.1 wt.% and 1 wt.% nano $Fe_xC$ powders were mixed with boron and magnesium powders by ball milling. The powder mixtures were made into pellets by uniaxial pressing. The pellets were heat-treated at $700^{\circ}C-900^{\circ}C$ in argon atmosphere for $MgB_2$ formation. It was found by powder X-ray diffraction that the raw powders were completely converted into $MgB_2$ after the heat treatment. The superconducting transition temperature ($T_c$) and critical current density ($J_c$), estimated from susceptibility-temperature and $M-H$ curves, were decreased by nano $Fe_xC$ addition. The $T_c$ and $J_c$ decrease by nano $Fe_xC$ addition are attributed to the incorporation of iron and carbon with $MgB_2$ lattices (Fe substitution for Mg and C substitution for B) due to the high reactivity of the nano $Fe_xC$ powder.

Superconducting properties of MgB2 bulks using the different sizes of Mg & B raw powders

  • Chung, K.C.;Jang, S.H.;Oh, Y.S.;Kang, S.H.;Hwang, D.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.20-23
    • /
    • 2020
  • Among many variables in processing the high performance MgB2 bulk superconductors, simple and important approach is to optimize the size dependence of the Mg & B raw powders. The present study is dedicated towards the variation in superconducting properties of MgB2 depending upon the various combination of Mg & B powders with the two different particle sizes respectively. From morphological investigation of the MgB2 samples, narrow and long pores are observed when the larger Mg powders are used, whereas it is rather like the oval shapes with the smaller Mg powders. Also, it can be seen that the connectivity of the MgB2 samples is much enhanced with the smaller size of the B powders. Jc-H properties of the MgB2 samples also indicate that the highest Jc can be obtained when using the smaller size of the B powder with the combination of the smaller Mg powders than that of the larger Mg powders. If the cases with the larger B powers, it is more favorable to select the larger Mg powders with the better Jc-H properties considering shorter diffusion length of Mg and more homogeneous mixture between the Mg & B powders.