DOI QR코드

DOI QR Code

Superconducting Properties and Phase Formation of MgB2 Superconductors Prepared by the Solid State Reaction Method using MgB4 and Mg Powder

MgB4와 Mg 분말을 원료로 사용하여 고상반응법으로 제조한 MgB2 초전도체의 상생성과 초전도 특성

  • Jeong, Hyeondeok (Department of Materials Engineering, Korea University of Technology Education) ;
  • Kim, Chan-Joong (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute) ;
  • Jun, Byung-Hyuk (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute) ;
  • Kim, Seolhyang (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute) ;
  • Park, Hai-Woong (Department of Materials Engineering, Korea University of Technology Education)
  • 정현덕 (한국기술교육대학교 신소재공학과) ;
  • 김찬중 (한국원자력연구원 중성자응용기술부) ;
  • 전병혁 (한국원자력연구원 중성자응용기술부) ;
  • 김설향 (한국원자력연구원 중성자응용기술부) ;
  • 박해웅 (한국기술교육대학교 신소재공학과)
  • Received : 2015.06.29
  • Accepted : 2015.10.16
  • Published : 2015.10.28

Abstract

$MgB_2$ bulk superconductors are synthesized by the solid state reaction of ($MgB_4$+xMg) precursors with excessive Mg compositions (x=1.0, 1.4, 2.0 and 2.4). The $MgB_4$ precursors are synthesized using (Mg+B) powders. The secondary phases ($MgB_4$ and MgO) present in the synthesized $MgB_4$ are removed by $HNO_3$ leaching. It is found that the formation reaction of $MgB_2$ is accelerated when Mg excessive compositions are used. The magnetization curves of $Mg_1+_xB_2$ samples show that the transition from the normal state to the superconducting state of the Mg excessive samples with x=0.5 and x=0.7 are sharper than that of $MgB_2$. The highest $J_c-B$ curve at 5 K and 20 K is achieved for x=0.5. Further addition of Mg decreases the $J_c$ owing to the formation of more pores in the $MgB_2$ matrix and smaller volume fraction of $MgB_2$.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu: Nature, 410 (2001) 63. https://doi.org/10.1038/35065039
  2. V. Ferrando, P. Orgiani, A. V. Pogrebnyakov, J. Chen, Q. Li, J. M. Redwing, X. X. Xi, J. E. Giencke, C. B. Eom, Q. R. Feng, J. B. Betts and C. H. Mielke: Appl. Phys. Lett., 87 (2005) 252509. https://doi.org/10.1063/1.2149289
  3. D. K. Finnemore, J. E. Ostenson, S. L. Bud'ko, G. Lapertot and P. C. Canfield: Phys. Rev. Lett., 86 (2001) 2420. https://doi.org/10.1103/PhysRevLett.86.2420
  4. C. Buzea and T. Yamashita: Supercond. Sci. Technol., 14 (2001) R115. https://doi.org/10.1088/0953-2048/14/11/201
  5. W. Goldacker, S. I. Schlachter, B. Obst, B. Liu, J. Reiner and S. Zimmer: Supercond. Sci. Technol., 17 (2004) S363. https://doi.org/10.1088/0953-2048/17/5/055
  6. A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii and K. Kishio, Supercond. Sci. Technol., 18 (2005) 116. https://doi.org/10.1088/0953-2048/18/1/019
  7. X. Xu, J. H. Kim, M. S. A. Hossain, J. S. Park, Y. Zhao, S. X. Dou, W. K. Yeoh, M. Rindfleisch and M. Tomsic: J. Appl. Phys., 103 (2008) 023912. https://doi.org/10.1063/1.2832752
  8. A. Berenov, A. Serquis, X. Z. Liao, Y. T. Zhu, D. E. Peterson, Y. Bugoslavsky, K. A. Yates, M. G. Blamire, L. F. Cohen and J. L. MacManus-Driscoll: Supercond. Sci. Technol., 17 (2004) 1093. https://doi.org/10.1088/0953-2048/17/10/001
  9. J. D. Moore, G. K. Perkins, W. Branford, K. A. Yates, A. D. Caplin, L. F. Cohen, S. K. Chen, N. A. Rutter and J. L. MacManus-Driscoll: Supercond. Sci. Technol., 20 (2007) S278. https://doi.org/10.1088/0953-2048/20/9/S24
  10. Y. Zhao, Y. Feng, C. H. Cheng, L. Zhou, Y. Wu, T. Machi, Y. Fudamoto, N. Koshizuka and M. Murakami: Appl. Phys. Lett., 79 (2001) 1154. https://doi.org/10.1063/1.1396629
  11. Y. Sun, D. Yu, Z. Liu, T. Wang, J. He, J. Xiang, D. Zheng and Y. Tian: Supercond. Sci. Technol., 20 (2007) 261. https://doi.org/10.1088/0953-2048/20/3/026
  12. B. H. Jun, Y. J. Kim, K. S. Tan and C. J. Kim: Supercond. Sci. Technol., 21 (2008) 105006. https://doi.org/10.1088/0953-2048/21/10/105006
  13. K. S. Tan, S. K. Chen, B. H. Jun and C. J. Kim: Supercond. Sci. Technol., 21 (2008) 105013. https://doi.org/10.1088/0953-2048/21/10/105013
  14. J. H. Yi, K. T. Kim, B. H. Jun, J. M. Sohn, B. G. Kim, J. Joo and C. J. Kim: Physica C, 469 (2009) 1192. https://doi.org/10.1016/j.physc.2009.05.190
  15. C.-J. Kim, J. H. Yi, B.-H. Jun, B. Y. You, S. D. Park and K.-N. Choo: Physica C, 502 (2014) 4. https://doi.org/10.1016/j.physc.2014.04.006
  16. K. L. Tan, K. P. Lim, A. S. Halim and S. K. Chen: Phys. Status Solidi A, 210 (3) (2013) 616. https://doi.org/10.1002/pssa.201228752
  17. K. S. Tan, B. H. Jun and C. J. Kim: J. Korean Phys. Soc., 54 (2009) 1626. https://doi.org/10.3938/jkps.54.1626
  18. D. Nardelli, D. Matera, M. Vignolo, G. Bovone, A. Palenzona, A. S. Siri and G. Grasso: Supercond. Sci. Technol., 26 (2013) 075010. https://doi.org/10.1088/0953-2048/26/7/075010
  19. A. Ito, A. Yamamoto, J. Shimoyama, H. Ogino and K. Kishio: IEEE Trans. Appl. Supercond., 23 (2013) 7101005. https://doi.org/10.1109/TASC.2013.2240035
  20. K. L. Tan, K. Y. Tan, K. P. Lim, S. A. Halim and S. K. Chen: Solid State Sci. Technol., 19 (2011) 15.
  21. C. P. Bean: Rev. Mod. Phys., 36 (1964) 31. https://doi.org/10.1103/RevModPhys.36.31
  22. S. T. Kim, D. S. Stone, J.-I. Cho, C.-Y. Jeong, C.-S. Kang and J.-C. Bae: J. Alloys Compd., 470 (2009) 85. https://doi.org/10.1016/j.jallcom.2008.02.099