The main purpose of the present paper is to derive the induced (Finsler) connections on the hypersurface from the Finsler connections of Berwald type (a Berwald h-recurrent connection and a $F\Gamma$' connection) of a Finsler space and to seek the necessary and sufficient conditions that the induced connections coincide with the intrinsic connections. And we show the quantities and relations with respect to the respective induced connections. Finally we show some examples.
다중 홈 이동 라우터(multi-homing mobile router)는 사용자 디바이스 접속을 위한 네트워크와 인터넷에 접속하는 네트워크를 분리하고 인터넷 접속을 위한 다양한 인터페이스를 가지게 된다. 본 논문에서는 이기종 네트워크 인터페이스를 가지는 이동 라우터에서 IP 기반 이동성을 지원하며 각 인터페이스 간의 부하 분산을 위한 메트릭을 제안한다. 제안한 이동 라우터의 부하 균등 메트릭을 한국과 홍콩의 실제 상용 망에 적용하여 성능을 측정하였다.
본 연구에서 제안하는 암호화 모듈 품질평가 체계는 ISO/IEC 9000 품질체계를 참조하여 Quality, Quality Factor, Quality Subfactor, Metric로 계층화된다. 암호화 알고리즘 실무적용 프로세스는 암호화 알고리즘 장단점 진단을 기초로 하여 암호화자산 평가, 알고리즘선택 포인트 분석, 품질 항목(quality factor) 도출, 제약조건도출, 암호모듈 품질평가체계 설계 등 5개단계로 설정한다. 이 5개 단계는 현장중심의 암호화 작업사례를 진단하여 업무에서 가장 필수적으로 수행되어야 할 작업순서를 도출한 것 이다. 2-Factor간 연계지표는 암호화 모듈의 품질항목(quality factor)을 발굴하고 이 품질 항목을 확보하는 환경인 암호화 작업의 제약조건 두가지 영역이다. 본 연구는 암호화 모듈 실무현장 적용체계를 하나의 표준화 모델로 제시한다. 우리는 정보기술 환경의 급속한 변화에 부응하여 암호화 알고리즘 개발과 현장 적용 모델을 다양하게 개발하므로서 암호화의 효율을 기대할 수 있을 것이다.
A convex $RP^n$-structure on a smooth anifold M is a representation of M as a quotient of a convex domain $\Omega \subset RP^n$ by a discrete group $\Gamma$ of collineations of $RP^n$ acting properly on $\Omega$. When M is a closed surface of genus g > 1, then the equivalence classes of such structures form a moduli space $B(M)$ homeomorphic to an open cell of dimension 16(g-1) (Goldman [2]). This cell contains the Teichmuller space $T(M)$ of M and it is of interest to know what of the rich geometric structure extends to $B(M)$. In [3], a symplectic structure on $B(M)$ is defined, which extends the symplectic structure on $T(M)$ defined by the Weil-Petersson Kahler form.
In this article we make a local classification of n-dimensional Riemannian manifolds (M, g) with harmonic curvature and less than four Ricci eigenvalues which admit a smooth non constant solution f to the following equation $$(1)\hspace{20}{\nabla}df=f(r-{\frac{R}{n-1}}g)+x{\cdot} r+y(R)g,$$ where ∇ is the Levi-Civita connection of g, r is the Ricci tensor of g, x is a constant and y(R) a function of the scalar curvature R. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, either (i) or (ii) below holds; (i) (V, g, f + x) is a static space and isometric to a domain in the Riemannian product of an Einstein manifold N and a static space (W, gW, f + x), where gW is a warped product metric of an interval and an Einstein manifold. (ii) (V, g) is isometric to a domain in the warped product of an interval and an Einstein manifold. For the proof we use eigenvalue analysis based on the Codazzi tensor properties of the Ricci tensor.
In this paper, we shall prove several results concerning Ricci curvature of a Riemannian manifold (M, g) := (SU(2), g) with an arbitrary given left invariant metric g. First of all, we obtain the maximum (resp. minimum) of {r(X) := Ric(X,X) | ${||X||}_g$ = 1,X ${\in}$ X(M)}, where Ric is the Ricci tensor field on (M, g), and then get a necessary and sufficient condition for the Levi-Civita connection ${\nabla}$ on the manifold (M, g) to be projectively flat. Furthermore, we obtain a necessary and sufficient condition for the Ricci curvature r(X) to be always positive (resp. negative), independently of the choice of unit vector field X.
Let $E{\rightarrow}M$ be an arbitrary vector bundle of rank k over a Riemannian manifold M equipped with a fiber metric and a compatible connection $D^E$. R. Albuquerque constructed a general class of (two-weights) spherically symmetric metrics on E. In this paper, we give a characterization of locally symmetric spherically symmetric metrics on E in the case when $D^E$ is flat. We study also the Einstein property on E proving, among other results, that if $k{\geq}2$ and the base manifold is Einstein with positive constant scalar curvature, then there is a 1-parameter family of Einstein spherically symmetric metrics on E, which are not Ricci-flat.
We provide some relations between CR invariants of boundaries of strongly pseudoconvex domains and higher order asymptotic behavior of certain complete K$\ddot{a}$hler metrics of given domains. As a consequence, we prove a rigidity theorem of strongly pseudoconvex domains by asymptotic curvature behavior of metrics.
If any geodesic on $F^n$ is also a geodesic on $\={F}^n$ and the inverse is true, the change $\sigma:L{\rightarrow}\={L}$ of the metric is called projective. In this paper, we will find the condition that a recurrent Finsler space remains to be a recurrent one under the projective change.
이 논문은 새로운 휴리스틱 탐색(heuristic search)방법을 이용하여, 수평 및 수 직선으로 이루어진 방해 물들이 놓인 가운데 수평 및 수직선으로 구성된 최단 거리 (rectilinear shortestpath)와 꺾이는회수가 가장 적은최소 꺾임경로(link metric shortest path) 및 이 둘을 혼합시킨 혼합형 최단 경로를 구하는 알고리즘을 서술 하고 있다. 최단 경로를 구하는 방법으로 미로 찾기형 알고리즘(maze-running algorithms)과 선형 탐색 알고리즘(line-search algorithms)의 장점만을 이용한 GMD 알고리즘(Guided Minimum Detour algorithm)을 제안하고 있으며 이를 더욱 효율 적으 로 개선한 LGMD 알고리즘 (Line-by-Line Guided Minimum Detour algorithmm)을 개발 하였다. 이들 GMD와 LGMD 알고리즘은 기존의 최단 경로를 내포하고 있는 conection group를 이용하지 않고서도 휴리스틱을 사용한 guided A 탐색(guided A* search)을 이용하여 최적의 최단 경로를 구할 수 있는 장점이 있으며 시간과 메모리 면에서 효 율을 극대화하였다. 이들 GMD와 LGMD 알고리즘은 각각 O(m+eloge+NlogN)와 O(eloge+ NlogN)의 시간과 O(e+N)의 메모리를 사용한다. 여기서 m은 탐색에 사용된 지선 (line segment)들의 수이다. 또한 LGMD는 최소 꺾임 경로(link metric shortest path)와 최단 경로와 최소의 꺾임을 조합한 혼합형 최단 경로를 구하는 데에도 적용될 수 있는 확장성을 가지고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.