• 제목/요약/키워드: Metric connection

검색결과 154건 처리시간 0.023초

THE INDUCED AND INTRINSIC CONNECTIONS OF BERWALD TYPE IN A FINSLERIAN HYPERSURFACE

  • Ha Yong Park;Hong Suh Park
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.383-391
    • /
    • 1997
  • The main purpose of the present paper is to derive the induced (Finsler) connections on the hypersurface from the Finsler connections of Berwald type (a Berwald h-recurrent connection and a $F\Gamma$' connection) of a Finsler space and to seek the necessary and sufficient conditions that the induced connections coincide with the intrinsic connections. And we show the quantities and relations with respect to the respective induced connections. Finally we show some examples.

  • PDF

이기종 네트워크 인터페이스를 갖는 이동 라우터의 부하 균등 메트릭 (Load Balancing Metric for a Mobile Router with Heterogeneous Network Interfaces)

  • 나태흠;박평구;류호용;박재형;황부현
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권5호
    • /
    • pp.983-987
    • /
    • 2017
  • 다중 홈 이동 라우터(multi-homing mobile router)는 사용자 디바이스 접속을 위한 네트워크와 인터넷에 접속하는 네트워크를 분리하고 인터넷 접속을 위한 다양한 인터페이스를 가지게 된다. 본 논문에서는 이기종 네트워크 인터페이스를 가지는 이동 라우터에서 IP 기반 이동성을 지원하며 각 인터페이스 간의 부하 분산을 위한 메트릭을 제안한다. 제안한 이동 라우터의 부하 균등 메트릭을 한국과 홍콩의 실제 상용 망에 적용하여 성능을 측정하였다.

품질 연계지표 평가방법을 사용한 암호화 모듈 실무현장 적용체계 연구 (A Study of Practical Field Application Cryptographic Module through Evaluation Derived by Connection Indicators)

  • 노시춘;나상엽
    • 융합보안논문지
    • /
    • 제14권4호
    • /
    • pp.55-60
    • /
    • 2014
  • 본 연구에서 제안하는 암호화 모듈 품질평가 체계는 ISO/IEC 9000 품질체계를 참조하여 Quality, Quality Factor, Quality Subfactor, Metric로 계층화된다. 암호화 알고리즘 실무적용 프로세스는 암호화 알고리즘 장단점 진단을 기초로 하여 암호화자산 평가, 알고리즘선택 포인트 분석, 품질 항목(quality factor) 도출, 제약조건도출, 암호모듈 품질평가체계 설계 등 5개단계로 설정한다. 이 5개 단계는 현장중심의 암호화 작업사례를 진단하여 업무에서 가장 필수적으로 수행되어야 할 작업순서를 도출한 것 이다. 2-Factor간 연계지표는 암호화 모듈의 품질항목(quality factor)을 발굴하고 이 품질 항목을 확보하는 환경인 암호화 작업의 제약조건 두가지 영역이다. 본 연구는 암호화 모듈 실무현장 적용체계를 하나의 표준화 모델로 제시한다. 우리는 정보기술 환경의 급속한 변화에 부응하여 암호화 알고리즘 개발과 현장 적용 모델을 다양하게 개발하므로서 암호화의 효율을 기대할 수 있을 것이다.

DEFORMATION SPACES OF CONVEX REAL-PROJECTIVE STRUCTURES AND HYPERBOLIC AFFINE STRUCTURES

  • Darvishzadeh, Mehdi-Reza;William M.Goldman
    • 대한수학회지
    • /
    • 제33권3호
    • /
    • pp.625-639
    • /
    • 1996
  • A convex $RP^n$-structure on a smooth anifold M is a representation of M as a quotient of a convex domain $\Omega \subset RP^n$ by a discrete group $\Gamma$ of collineations of $RP^n$ acting properly on $\Omega$. When M is a closed surface of genus g > 1, then the equivalence classes of such structures form a moduli space $B(M)$ homeomorphic to an open cell of dimension 16(g-1) (Goldman [2]). This cell contains the Teichmuller space $T(M)$ of M and it is of interest to know what of the rich geometric structure extends to $B(M)$. In [3], a symplectic structure on $B(M)$ is defined, which extends the symplectic structure on $T(M)$ defined by the Weil-Petersson Kahler form.

  • PDF

STATIC AND RELATED CRITICAL SPACES WITH HARMONIC CURVATURE AND THREE RICCI EIGENVALUES

  • Kim, Jongsu
    • 대한수학회지
    • /
    • 제57권6호
    • /
    • pp.1435-1449
    • /
    • 2020
  • In this article we make a local classification of n-dimensional Riemannian manifolds (M, g) with harmonic curvature and less than four Ricci eigenvalues which admit a smooth non constant solution f to the following equation $$(1)\hspace{20}{\nabla}df=f(r-{\frac{R}{n-1}}g)+x{\cdot} r+y(R)g,$$ where ∇ is the Levi-Civita connection of g, r is the Ricci tensor of g, x is a constant and y(R) a function of the scalar curvature R. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, either (i) or (ii) below holds; (i) (V, g, f + x) is a static space and isometric to a domain in the Riemannian product of an Einstein manifold N and a static space (W, gW, f + x), where gW is a warped product metric of an interval and an Einstein manifold. (ii) (V, g) is isometric to a domain in the warped product of an interval and an Einstein manifold. For the proof we use eigenvalue analysis based on the Codazzi tensor properties of the Ricci tensor.

ON RICCI CURVATURES OF LEFT INVARIANT METRICS ON SU(2)

  • Pyo, Yong-Soo;Kim, Hyun-Woong;Park, Joon-Sik
    • 대한수학회보
    • /
    • 제46권2호
    • /
    • pp.255-261
    • /
    • 2009
  • In this paper, we shall prove several results concerning Ricci curvature of a Riemannian manifold (M, g) := (SU(2), g) with an arbitrary given left invariant metric g. First of all, we obtain the maximum (resp. minimum) of {r(X) := Ric(X,X) | ${||X||}_g$ = 1,X ${\in}$ X(M)}, where Ric is the Ricci tensor field on (M, g), and then get a necessary and sufficient condition for the Levi-Civita connection ${\nabla}$ on the manifold (M, g) to be projectively flat. Furthermore, we obtain a necessary and sufficient condition for the Ricci curvature r(X) to be always positive (resp. negative), independently of the choice of unit vector field X.

ON THE GEOMETRY OF VECTOR BUNDLES WITH FLAT CONNECTIONS

  • Abbassi, Mohamed Tahar Kadaoui;Lakrini, Ibrahim
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1219-1233
    • /
    • 2019
  • Let $E{\rightarrow}M$ be an arbitrary vector bundle of rank k over a Riemannian manifold M equipped with a fiber metric and a compatible connection $D^E$. R. Albuquerque constructed a general class of (two-weights) spherically symmetric metrics on E. In this paper, we give a characterization of locally symmetric spherically symmetric metrics on E in the case when $D^E$ is flat. We study also the Einstein property on E proving, among other results, that if $k{\geq}2$ and the base manifold is Einstein with positive constant scalar curvature, then there is a 1-parameter family of Einstein spherically symmetric metrics on E, which are not Ricci-flat.

HIGHER ORDER ASYMPTOTIC BEHAVIOR OF CERTAIN KÄHLER METRICS AND UNIFORMIZATION FOR STRONGLY PSEUDOCONVEX DOMAINS

  • Joo, Jae-Cheon;Seo, Aeryeong
    • 대한수학회지
    • /
    • 제52권1호
    • /
    • pp.113-124
    • /
    • 2015
  • We provide some relations between CR invariants of boundaries of strongly pseudoconvex domains and higher order asymptotic behavior of certain complete K$\ddot{a}$hler metrics of given domains. As a consequence, we prove a rigidity theorem of strongly pseudoconvex domains by asymptotic curvature behavior of metrics.

SOME THEOREMS ON RECURRENT FINSLER SPACES BY THE PROJECTIVE CHANGE

  • Kim, Byung-Doo;Lee, Il-Yong
    • East Asian mathematical journal
    • /
    • 제15권2호
    • /
    • pp.337-344
    • /
    • 1999
  • If any geodesic on $F^n$ is also a geodesic on $\={F}^n$ and the inverse is true, the change $\sigma:L{\rightarrow}\={L}$ of the metric is called projective. In this paper, we will find the condition that a recurrent Finsler space remains to be a recurrent one under the projective change.

  • PDF

지능형 최단 경로, 최소 꺾임 경로 및 혼합형 최단 경로 찾기 (Finding Rectilinear(L1), Link Metric, and Combined Shortest Paths with an Intelligent Search Method)

  • 임준식
    • 한국정보처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.43-54
    • /
    • 1996
  • 이 논문은 새로운 휴리스틱 탐색(heuristic search)방법을 이용하여, 수평 및 수 직선으로 이루어진 방해 물들이 놓인 가운데 수평 및 수직선으로 구성된 최단 거리 (rectilinear shortestpath)와 꺾이는회수가 가장 적은최소 꺾임경로(link metric shortest path) 및 이 둘을 혼합시킨 혼합형 최단 경로를 구하는 알고리즘을 서술 하고 있다. 최단 경로를 구하는 방법으로 미로 찾기형 알고리즘(maze-running algorithms)과 선형 탐색 알고리즘(line-search algorithms)의 장점만을 이용한 GMD 알고리즘(Guided Minimum Detour algorithm)을 제안하고 있으며 이를 더욱 효율 적으 로 개선한 LGMD 알고리즘 (Line-by-Line Guided Minimum Detour algorithmm)을 개발 하였다. 이들 GMD와 LGMD 알고리즘은 기존의 최단 경로를 내포하고 있는 conection group를 이용하지 않고서도 휴리스틱을 사용한 guided A 탐색(guided A* search)을 이용하여 최적의 최단 경로를 구할 수 있는 장점이 있으며 시간과 메모리 면에서 효 율을 극대화하였다. 이들 GMD와 LGMD 알고리즘은 각각 O(m+eloge+NlogN)와 O(eloge+ NlogN)의 시간과 O(e+N)의 메모리를 사용한다. 여기서 m은 탐색에 사용된 지선 (line segment)들의 수이다. 또한 LGMD는 최소 꺾임 경로(link metric shortest path)와 최단 경로와 최소의 꺾임을 조합한 혼합형 최단 경로를 구하는 데에도 적용될 수 있는 확장성을 가지고 있다.

  • PDF