A Study of Practical Field Application Cryptographic Module through Evaluation Derived by Connection Indicators

품질 연계지표 평가방법을 사용한 암호화 모듈 실무현장 적용체계 연구

  • 노시춘 (남서울대학교 컴퓨터학과) ;
  • 나상엽 (남서울대학교 컴퓨터학과)
  • Received : 2014.05.30
  • Accepted : 2014.06.17
  • Published : 2014.06.30

Abstract

In this study, we propose a cryptographic module quality evaluation system referenced by ISO/IEC 9000 quality system with Quality, Quality Factor, Quality Subfactor, Metric. Practical application process encryption algorithm based on the encryption algorithm to encrypt the pros and cons valuation of diagnosis, point selection algorithm, analysis, and quality items(quality factor), eliciting constraints derived, such as the cryptographic module design quality evaluation system is set to step 5. The five steps are examples of field-based diagnostic tool for cryptographic operations, the most essential work to be done in order to derive one will work. 2-Factor encryption module for connection between indicator items(quality factor) to identify and ensure the quality of the item the constraints of the environment are two kinds of cryptographic operations. This study is an encryption module and a practical field application system, it presents the standardized model. We have to meet the rapid changes in information technology. The environment, development and the encryption algorithm applied to model a wide variety of on-site development encryption will be able to expect the efficiency.

본 연구에서 제안하는 암호화 모듈 품질평가 체계는 ISO/IEC 9000 품질체계를 참조하여 Quality, Quality Factor, Quality Subfactor, Metric로 계층화된다. 암호화 알고리즘 실무적용 프로세스는 암호화 알고리즘 장단점 진단을 기초로 하여 암호화자산 평가, 알고리즘선택 포인트 분석, 품질 항목(quality factor) 도출, 제약조건도출, 암호모듈 품질평가체계 설계 등 5개단계로 설정한다. 이 5개 단계는 현장중심의 암호화 작업사례를 진단하여 업무에서 가장 필수적으로 수행되어야 할 작업순서를 도출한 것 이다. 2-Factor간 연계지표는 암호화 모듈의 품질항목(quality factor)을 발굴하고 이 품질 항목을 확보하는 환경인 암호화 작업의 제약조건 두가지 영역이다. 본 연구는 암호화 모듈 실무현장 적용체계를 하나의 표준화 모델로 제시한다. 우리는 정보기술 환경의 급속한 변화에 부응하여 암호화 알고리즘 개발과 현장 적용 모델을 다양하게 개발하므로서 암호화의 효율을 기대할 수 있을 것이다.

Keywords

References

  1. R. L. Rivest, A. Shamir, L. Adleman, "A Method for Obtaining Digital. Signatures and Public-Key Cryptosystems", Communications of the ACM vol. 21. pp 8-10, 1978
  2. Imai H., Hanaoka G., Shikata J., Otsuka A., Nascimento A.C. 2002. Cyptography with Information Theoretic Security. Information Theory Workshop, 2002, Proceedings of the IEEE, 20-25 Oct 2002.
  3. Li, S., Zheng, X., 2002. On the Security of an Image Encryption Method. ICIP2002.
  4. Menezes, A. J., P.C. Van Oorschot, S.A. Van Stone. 1996.Handbook of Applied Cryptography. CRC press.
  5. Overbey, J., Traves, W., Wojdylo, J., 2005. On the keyspace of the Hill cipher. Cryptologia, 29(1):59-72. https://doi.org/10.1080/0161-110591893771
  6. A. Diffie, M. E. Hellman, ''New directions in cryptography", IEEE Trans. Inf. Theory IT-26, no. 6., pp. 644-654, 1976
  7. Bibhudendra Acharya, Girija Sankar Rath, Sarat Kumar Patra, Saroj Kumar Panigrahy. 2007. Novel Methods of Generating Self-Invertible Matrix for Hill Cipher Algorithm, International Journal of Security, Vol 1, Issue 1, 2007, pp. 14-21.
  8. P.W. Shor, "Algorithms for quantum computation: discrete logarithms and factoring", Proceedings, 35th Annual Symposium on Fundamentals of Computer Science (FOCS), pp. 124-134.. 1994
  9. Tom M. Apostol, "Calculus", Volume 1, Blaisdell Publishing Company, pp 422-423, 1962
  10. Brian S. Thomson, Andrew M. Bruckner, "Elementary Real Analysis Second Edition", CreateSpace, pp 85, 2008
  11. O.Elkeelany, M.M.Matalgah, K.P.Sheikh , M.Thaker, G.Chaudhry, D.Medhi, J.Qaddour, ""Performance Analysis of IPSec Protocol: Encryption and Authentication"", 1164-1168, IEEE 2002
  12. Alan O.Freier, Philip Karlton, Paul C.Kocher, "he SSL Protocol Version 3.0" Internet-Draft, November 1996