• 제목/요약/키워드: Methylobacter

검색결과 7건 처리시간 0.02초

Bacterial community analysis of stabilized soils in proximity to an exhausted mine

  • Park, Jae Eun;Lee, Byung-Tae;Kim, Byung-Yong;Son, Ahjeong
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.420-429
    • /
    • 2018
  • Soil stabilization is a soil remediation technique that reduces the mobility of heavy metals in soils. Although it is a well-established technique, it is nonetheless essential to perform a follow-up chemical assessment via a leaching test to evaluate the immobilization of heavy metals in the soil matrix. Unfortunately, a standard chemical assessment is not sufficient for evaluation of the biological functional state of stabilized soils slated for agricultural use. Therefore, it is useful to employ a pyrosequencing-based microbial community analysis for the purpose. In this study, a recently stabilized site in the proximity of an exhausted mine was analyzed for bacterial diversity, richness, and relative abundance as well as the effect of environmental factors. Based on the Shannon and Chao1 indices and rarefaction curves, the results showed that the stabilized layer exhibited lower bacterial diversity than control soils. The prevalence of dominant bacterial populations was examined in a hierarchical manner. Relatively high abundances of Proteobacteria and Methylobacter tundripaludum were observed in the stabilized soil. In particular, there was substantial abundance of the Methylobacter genus, which is known for its association with heavy metal contamination. The study demonstrated the efficacy of (micro)biological assessment for aiding in the understanding and post-management of stabilized soils.

염화암모늄 영향에 따른 혼합종 메탄산화균의 종조성 변화 및 메탄올 대사 특성 (Effect of Ammonium Chloride on the Mixed Methanotrophs Species Composition and Methanol Metabolism)

  • 김이태;윤영한
    • 한국수처리학회지
    • /
    • 제26권6호
    • /
    • pp.27-42
    • /
    • 2018
  • This study analyzed the utility of ammonium chloride ($NH_4Cl$) as a nitrogen source for methanotroph communities. When cultured in nitrate mineral salt (NMS) medium, the methanotroph community we identified four families, seven genera, and 16 type I and type II species of methanotrophs. Among species in the Methylobacter genus, Methylobacter marinus could be actively cultured in NMS medium without NaCl addition. Following the addition of 25 mM $NH_4Cl$, the numbers of the type I genera Methylomonas, Methylococcus, and Methylobacter were increased, whereas the numbers of the type II genera Methylocystis and Methylosinus were decreased after 5 days. In methanotroph communities, certain concentrations of $NH_4Cl$ affected methane consumption and growth of methanotrophs at the community level. $NH_4Cl$ caused a considerable decrease in the methane consumption rate and the expression of soluble methane monooxygenases (sMMOs) but did not inhibit the growth of Methylomonas methanica expressing sMMO. These results could be attributed to competitive antagonism of MMOs due to their direct involvement in ammonia oxidation.

다양한 환경조건을 가진 토양의 메탄산화세균 군집 특성 (Characterization of Methanotrophic Communities in Soils from Regions with Different Environmental Settings)

  • 김태관;박현정;이상현;김평화;문경은;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제40권2호
    • /
    • pp.152-156
    • /
    • 2012
  • 서울 근교의 민물 습지(FW), 해수습지(SW), 산림 토양(FS) 그리고 매립지 복토(LS)의 메탄산화세균 군집을 clone library/sequencing 기법을 이용하여 분석하였다. 메탄산화세균인 Methylocaldum, Methlyococcus과 Methylosinus는 FS와 SW에서 풍부하였으며, Methylobacter와 Methylomonas는 FW에서 풍부하였고, Methylocystis와 Methylomicrobium은 LS에서 우점하였다. 메탄 산화가 관찰되기 전까지 필요한 lag phase는 각 토양별로 유의적으로 차이가 있었고, 메탄 산화속도는 $FW{\geq}LS{\geq}SW>FS$순이었다. 이러한 결과들은 토양의 환경조건은 메탄산화세균의 군집과 메탄산화능에 영향을 미치는 중요한 인자임을 시사한다.

The Presence of Significant Methylotrophic Population in Biological Activated Carbon of a Full-Scale Drinking Water Plant

  • Kim, Tae Gwan;Moon, Kyung-Eun;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1774-1778
    • /
    • 2013
  • Methylotrophs within biological activated carbon (BAC) systems have not received attention although they are a valuable biological resource for degradation of organic pollutants. In this study, methylotrophic populations were monitored for four consecutive seasons in BAC of an actual drinking water plant, using ribosomal tag pyrosequencing. Methylotrophs constituted up to 5.6% of the bacterial community, and the methanotrophs Methylosoma and Methylobacter were most abundant. Community comparison showed that the temperature was an important factor affecting community composition, since it had an impact on the growth of particular methylotrophic genera. These results demonstrated that BAC possesses a substantial methylotrophic activity and harbors the relevant microbes.

Spatial Patterns of Methane Oxidation and Methanotrophic Diversity in Landfill Cover Soils of Southern China

  • Chi, Zi-Fang;Lu, Wen-Jing;Wang, Hong-Tao
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.423-430
    • /
    • 2015
  • Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes.

Mitigating $CH_4$ Emissions in Semi-Aerobic Landfills: Impacts of Operating Conditions on Abundance and Community Structure of Methanotrophs in Cover Soils

  • Li, Huai;Chi, Zi-Fang;Lu, Wen-Jing;Wang, Hong-Tao
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권7호
    • /
    • pp.993-1003
    • /
    • 2013
  • Methanotrophs are the most important sink of $CH_4$, which is a more highly potent greenhouse gas than $CO_2$. Methanotrophic abundance and community diversity in cover soils from two typical semi-aerobic landfills (SALs) in China were detected using real-time polymerase chain reaction (real-time-PCR) and denaturing gradient gel electrophoresis (DGGE) based on 16S rRNA genes, respectively. Real time-PCR showed that Type I methanotrophs ranged from $1.07{\times}10^6$ to $2.34{\times}10^7$ copies/g soil and that of Type II methanotrophs from $1.51{\times}10^7$ to $1.83{\times}10^8$ copies/g soil. The ratio of Type II to Type I methanotrophic copy numbers ranged from 5.61 to 21.89, indicating that Type II methanotrophs dominated in SAL. DGGE revealed that Type I methanotrophs responded more sensitively to the environment, changing as the community structure varied with different soil types and locations. Methylobacter, Methylosarcina, and Methylomicrobium for Type I, and Methylocystis for Type II were most prevalent in the SAL cover layer. Abundant interflow $O_2$ with high $CH_4$ concentration in SALs is the reason for the higher population density of methanotrophs and the higher enrichment of Type II methanotrophs compared with anaerobic landfills and other ecosystems, which proved a conclusion that increasing the oxygen supply in a landfill cover layer would greatly improve $CH_4$ mitigation.

Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions

  • Yang, Hyoju;Jung, Hyekyeng;Oh, Kyungcheol;Jeon, Jun-Min;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.803-814
    • /
    • 2021
  • A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40℃ at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50℃) and mesophilic conditions (30℃). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40℃ and 50℃, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the non-summer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.