DOI QR코드

DOI QR Code

Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions

  • Yang, Hyoju (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Jung, Hyekyeng (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Oh, Kyungcheol (Green Environmental Complex Center) ;
  • Jeon, Jun-Min (Green Environmental Complex Center) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • Received : 2021.03.03
  • Accepted : 2021.04.20
  • Published : 2021.06.28

Abstract

A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40℃ at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50℃) and mesophilic conditions (30℃). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40℃ and 50℃, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the non-summer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.

Keywords

Acknowledgement

This research was supported by the Korean Ministry of Environment as a Converging Technology Project (201500164003).

References

  1. Intergovernmental Panel on Climate Change. 2014. Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland. Available at: https://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf Accessed 27 February, 2021).
  2. Allen G. 2016. Rebalancing the global methane budget. Nature 538: 46-48. https://doi.org/10.1038/538046a
  3. Cho KS, Ryu HW. 2009. Biotechnology for the mitigation of methane emission from landfills. Microbiol. Biotechnol. Lett. 37: 293-305.
  4. Duan Z, Lu W, Li D, Wang H. 2014. Temporal variation of trace compound emission on the working surface of a landfill in Beijing, China. Atmos.Environ. 88: 230-238. https://doi.org/10.1016/j.atmosenv.2014.01.051
  5. Fang JJ, Yang N, Cen DY, Shao LM, He PJ. 2012. Odor compounds from different sources of landfill: characterization and source identification. Waste Manage 32: 1401-1410. https://doi.org/10.1016/j.wasman.2012.02.013
  6. Capelli L, Sironi S, Del Rosso R, Centola P, Rossi A, Austeri C. 2011. Olfactometric approach for the evaluation of citizens' exposure to industrial emissions in the city of Terni, Italy. Sci. Total. Environ. 409: 595-603. https://doi.org/10.1016/j.scitotenv.2010.10.054
  7. Hayes JE, Stevenson RJ, Stuetz RM. 2014. The impact of malodour on communities: a review of assessment techniques. Sci. Total Environ. 500-501: 395-407. https://doi.org/10.1016/j.scitotenv.2014.09.003
  8. Palmiotto M, Fattore E, Paiano V, Celeste G, Colombo A, Davoli E. 2014. Influence of a municipal solid waste landfill in the surrounding environment: toxicological risk and odor nuisance effects. Environ. Int. 68: 16-24. https://doi.org/10.1016/j.envint.2014.03.004
  9. Wu C, Liu J, Yan L, Chen H, Shao H, Meng T. 2015. Assessment of odor activity value coefficient and odor contribution based on binary interaction effects in waste disposal plant. Atmos. Environ. 103: 231-237. https://doi.org/10.1016/j.atmosenv.2014.12.045
  10. Lee YY, Jung H, Ryu HW, Oh KC, Jeon JM, Cho KS. 2018. Seasonal characteristics of odor and methane mitigation and the bacterial community dynamics in an on-site biocover at a sanitary landfill. Waste Manag. 71: 277-286. https://doi.org/10.1016/j.wasman.2017.10.037
  11. Jung H, Oh KC, Ryu HW, Jeon JM, Cho KS. 2019. Simultaneous mitigation of methane and odors in a biowindow using a pipe network. Waste Manag. 100: 45-56. https://doi.org/10.1016/j.wasman.2019.09.004
  12. Pecorini I, Rossi E, Iannelli R. 2020. Mitigation of methane, NMVOCs and odor emissions in active and passive biofiltration systems at municipal solid waste landfills. Sustainability 12: 3203. https://doi.org/10.3390/su12083203
  13. Lee YY, Hong S, Cho KS. 2019. Design and shelf stability assessment of bacterial agents for simultaneous removal of methane and odors. J. Environ. Sci. Health Part A-Tox. Hazard. Subst. Environ. Eng. 54: 906-913. https://doi.org/10.1080/10934529.2019.1607651
  14. Einola JK, Karhu AE, Rintala JA. 2008. Mechanically-biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions. Waste Manag. 28: 97-111. https://doi.org/10.1016/j.wasman.2007.01.002
  15. Qi G, Pan Z, Yamamoto Y, Andriamanohiarisoamanana FJ, Yamashiro T, Iwasaki M, et al. 2019. The survival of pathogenic bacteria and plant growth promoting bacteria during mesophilic anaerobic digestion in full-scale biogas plants. Anim. Sci. J. 90: 297-303. https://doi.org/10.1111/asj.13137
  16. Singh G, Jain VK, Singh A. 2017. Effect of temperature and other factors on anaerobic digestion process, responsible for bio gas production. J. Theor. Appl. Mech. 12: 637-657.
  17. Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. 2018. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8: 885-889. https://doi.org/10.1038/s41558-018-0259-x
  18. Yun J, Jung H, Ryu HW, Oh KC, Jeon JM, Cho KS. 2018a. Odor mitigation and bacterial community dynamics in on-site biocovers at a sanitary landfill in South Korea. Environ. Res. 166: 516-528. https://doi.org/10.1016/j.envres.2018.06.039
  19. Yun J, Oh KC, Jeon JM, Ryu HW, Cho KS. 2017. Seasonal emission characteristics of odors and methane from soil cover layers in a sanitary landfill. J. Odor Indoor Environ. 16: 315-328. https://doi.org/10.15250/joie.2017.16.4.315
  20. Dravnieks A, Jarke F. 1980. Odor threshold measurement by dynamic olfactometry: Significant operational variables. J. Air Pollut. Contr. Assoc. 30: 1284-1289. https://doi.org/10.1080/00022470.1980.10465182
  21. Pearce MM, Hilt EE, Rosenfeld AB, Zilliox MJ, Thomas-White K, Fok C, et al. 2014. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. mBio 5: e01283-01214.
  22. Li W, Fu L, Niu B, Wu S, Wooley J. 2012. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13: 656-668. https://doi.org/10.1093/bib/bbs035
  23. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  24. Park JE, Lee BT, Kim BY, Son A. 2018. Bacterial community analysis of stabilized soils in proximity to an exhausted mine. Environ. Eng. Res. 23: 420-429. https://doi.org/10.4491/eer.2018.040
  25. Lozupone C, Hamady M, Knight R. 2006. UniFrac-an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7: 371. https://doi.org/10.1186/1471-2105-7-371
  26. Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5: 1571-1579. https://doi.org/10.1038/ismej.2011.41
  27. Zhang Y, Zhang H, Jia B, Wang W, Zhu W, Huang T, et al. 2012. Landfill CH4 oxidation by mineralized refuse: effects of NH4+-N incubation, water content and temperature. Sci. Total. Environ. 426: 406-413. https://doi.org/10.1016/j.scitotenv.2012.03.083
  28. Bajar S, Singh A, Kaushik CP, Kaushik A. 2016. Evaluation and statistical optimization of methane oxidation using rice husk amended dumpsite soil as biocover. Waste Manag. 53: 136-143. https://doi.org/10.1016/j.wasman.2015.09.023
  29. Karthikeyan OP, Chidambarampadmavathy K, Nadarajan S, Heimann K. 2016. Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia. Environ. Sci. Pollut. Res. 23: 4346-4357. https://doi.org/10.1007/s11356-016-6174-7
  30. Ahoughalandari B, Cabral AR. 2017a. Influence of capillary barrier effect on biogas distribution at the base of passive methane oxidation biosystems: Parametric study. Waste Manag. 63: 172-187. https://doi.org/10.1016/j.wasman.2016.11.026
  31. Ahoughalandari B, Cabral AR. 2017b. Landfill gas distribution at the base of passive methane oxidation biosystems: Transient state analysis of several configurations. Waste Manag. 69: 298-314. https://doi.org/10.1016/j.wasman.2017.08.027
  32. Ahoughalandari B, Cabral AR. Leroueil S. 2018. Elements of design of passive methane oxidation biosystems: Fundamental and practical considerations about compaction and hydraulic characteristics on biogas migration. Geotech. Geol. Eng. 36: 2593-2609. https://doi.org/10.1007/s10706-018-0485-z
  33. Cho KS, Jung H. 2017. Methane mitigation technology using methanotrophs: A review. Microbiol. Biotechnol. Lett. 45: 185-199. https://doi.org/10.4014/mbl.1707.07005
  34. Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, et al. 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 27: 409-455. https://doi.org/10.1177/0734242X09339325
  35. Nanda S, Sarangi PK, Abraham J, 2012. Microbial biofiltration technology for odour abatement: An introductory review. J. Soil Sci. Environ. Manag. 3: 28-35.
  36. Yun J, Jung H, Choi H, Oh KC, Jeon JM, Ryu HW, et al. 2018b. Performance evaluation of an on-site biocomplex textile as an alternative daily cover in a sanitary landfill, South Korea. Waste Manag. Res. 36: 1137-1145. https://doi.org/10.1177/0734242X18806996
  37. Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, et al. 2007. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int. J. Syst. Evol. Microbiol. 57: 2299-2306. https://doi.org/10.1099/ijs.0.65098-0
  38. Bjornsdottir SH, Blondal T, Hreggvidsson GO, Eggertsson G, Petursdottir S, Hjorleifsdottir S, et al. 2006. Rhodothermus marinus: physiology and molecular biology. Extremophiles 10: 1-16. https://doi.org/10.1007/s00792-005-0466-z
  39. Gregoire P, Fardeau ML, Joseph M, Guasco S, Hamaide F, Biasutti S, et al. 2011. Isolation and characterization of Thermanaerothrix daxensis gen. nov., sp. nov., a thermophilic anaerobic bacterium pertaining to the phylum "Chloroflexi", isolated from a deep hot aquifer in the Aquitaine Basin. Syst. Appl. Microbiol. 34: 494-497. https://doi.org/10.1016/j.syapm.2011.02.004
  40. Nunoura T, Hirai M, Miyazaki M, Kazama H, Makita H, Hirayama H, et al. 2013. Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov. Microbes Environ. 28: 228-235. https://doi.org/10.1264/jsme2.ME12193
  41. Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA, Kolganova TV, Kublanov IV. 2013. Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. Int. J. Syst. Evol. Microbiol. 63: 86-92. https://doi.org/10.1099/ijs.0.041012-0
  42. De Bo I, Heyman J, Vincke J, Verstraete W, Van Langen-hove H. 2003. Dimethyl sulfide removal from synthetic waste gas using a flat poly(dimethylsiloxane)-coated composite mem-brane bioreactor. Environ. Sci. Technol. 37: 4228-4234. https://doi.org/10.1021/es020168f
  43. Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP. 2000. Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch. Microbiol. 173: 425-437. https://doi.org/10.1007/s002030000165
  44. Hayes AC, Liss SN, Allen DG. 2010. Growth kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol. Appl. Environ. Microbiol. 76: 5423-5431. https://doi.org/10.1128/AEM.00076-10
  45. Fang Y, Jia X, Chen L, Lin C, Zhang H, Chen J. 2019. Effect of thermotolerant bacterial inoculation on the microbial community during sludge composting. Can. J. Microbiol. 65: 750-761. https://doi.org/10.1139/cjm-2019-0107
  46. Wei Z, Huang Q, Ye Q, Chen Z, Li B, Wang J. 2015. Thermophilic biotrickling filtration of gas-phase trimethylamine. Atmos. Pollut. Res. 6: 428-433. https://doi.org/10.5094/APR.2015.047
  47. Tortosa G, Castellano-Hinojosa A, Correa-Galeote D, Bedmar EJ. 2017. Evolution of bacterial diversity during two-phase olive mill waste ("alperujo") composting by 16S rRNA gene pyrosequencing. Bioresour. Technol. 224: 101-111. https://doi.org/10.1016/j.biortech.2016.11.098
  48. Limbri H, Gunawan C, Thomas T, Smith A, Scott J, Rosche B. 2014. Coal-packed methane biofilter for mitigation of green house gas emissions from coal mine ventilation air. PLoS One 9: e94641. https://doi.org/10.1371/journal.pone.0094641
  49. Wijnands LM, Dufrenne JB, Zwietering MH, van Leusden FM. 2006. Spores from mesophilic Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains. Int. J. Food Microbiol. 112: 120-128. https://doi.org/10.1016/j.ijfoodmicro.2006.06.015
  50. Panda MK, Sahu MK, Tayung K. 2013. Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Indian J. Microbiol. 5: 159-165.
  51. Brooke AG, Watling EM, Attwood MM, Tempest DW. 1989. Environmental control of metabolic fluxes in thermotolerant methylotrophic Bacillus strains. Arch. Microbiol. 151: 268-273. https://doi.org/10.1007/BF00413141
  52. Al-Awadhi N, Mason CA. 1990. The process utility of thermotolerant methylotrophic bacteria: I. an evaluation in chemostat culture. Biotechnol. Bioeng. 36: 816-820. https://doi.org/10.1002/bit.260360810
  53. Eshinimaev BT, Medvedkova KA, Khmelenina VN, Suzina NE, Osipov GA, Lysenko AM, et al. 2004. New thermophilic methanotrophs of the genus Methylocaldum. Microbiology 73: 448-456. https://doi.org/10.1023/B:MICI.0000036991.31677.13
  54. Bodrossy L, Holmes EM, Holmes AJ, Kovacs KL, Murrell JC. 1997. Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch. Microbiol. 168: 493-503. https://doi.org/10.1007/s002030050527
  55. Hadad D, Geresh S, Sivan A. 2005. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 98: 1093-1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x
  56. Chebbi A, Mhiri N, Rezgui F, Ammar N, Maalej A, Sayadi S, et al. 2015. Biodegradation of malodorous thiols by a Brevibacillus sp. strain isolated from a Tunisian phosphate factory. FEMS Microbiol. Lett. 362: fnv097. https://doi.org/10.1093/femsle/fnv097
  57. Chen ZY, Wu WX, Min H, Chen MC, Zhao YH. 2000. Isolation and identification of two methane-utilizing strains of Streptomyces hygroscopicus. J. Zhejiang Univ. (Agriculture and Life Sciences) 26: 384-388.
  58. Mohamed EF, Awad G, Andriantsiferana C, El-Diwany AI. 2016. Biofiltration technology for the removal of toluene from polluted air using Streptomyces griseus. Environ. Technol. 37: 1197-1207. https://doi.org/10.1080/09593330.2015.1107623
  59. Szabo I, Benedek A, Szabo IM, Barabas G. 2000. Feather degradation with a thermotolerant Streptomyces graminofaciens strain. World J. Microbiol. Biotechnol. 16: 253-255. https://doi.org/10.1023/A:1008950032017
  60. Jung HM, Lee JS, Bae HM, Yi TH, Kim SY, Lee ST, et al. 2011. Inquilinus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 61: 201-204. https://doi.org/10.1099/ijs.0.018689-0
  61. Afzal I, Iqrar I, Shinwari ZK, Yasmin A. 2016. Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regul. 81: 399-408. https://doi.org/10.1007/s10725-016-0216-5
  62. Kim MK, Jung HY. 2007. Chitinophaga terrae sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 57: 1721-1724. https://doi.org/10.1099/ijs.0.64964-0
  63. de Boer L, Dijkhuizen L, Grobben G, Goodfellow M, Stackebrandt E, Parlett JH, Whitehead D, Witt D. 1990. Amycolatopsis methanolica sp. nov., a facultatively methylotrophic actinomycete. Int. J. Syst. Bacteriol. 40: 194-204. https://doi.org/10.1099/00207713-40-2-194
  64. Lechevalier MP, Prauser H, Labeda DP, Ruan JS. 1986. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int. J. Syst. Bacteriol. 36: 29-37. https://doi.org/10.1099/00207713-36-1-29
  65. Allison SD, Martiny JBH. 2008. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105: 11512-11519. https://doi.org/10.1073/pnas.0801925105
  66. Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA, 2005. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7: 301-313. https://doi.org/10.1111/j.1462-2920.2005.00695.x