Acknowledgement
This research was supported by the Korean Ministry of Environment as a Converging Technology Project (201500164003).
References
- Intergovernmental Panel on Climate Change. 2014. Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland. Available at: https://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf Accessed 27 February, 2021).
- Allen G. 2016. Rebalancing the global methane budget. Nature 538: 46-48. https://doi.org/10.1038/538046a
- Cho KS, Ryu HW. 2009. Biotechnology for the mitigation of methane emission from landfills. Microbiol. Biotechnol. Lett. 37: 293-305.
- Duan Z, Lu W, Li D, Wang H. 2014. Temporal variation of trace compound emission on the working surface of a landfill in Beijing, China. Atmos.Environ. 88: 230-238. https://doi.org/10.1016/j.atmosenv.2014.01.051
- Fang JJ, Yang N, Cen DY, Shao LM, He PJ. 2012. Odor compounds from different sources of landfill: characterization and source identification. Waste Manage 32: 1401-1410. https://doi.org/10.1016/j.wasman.2012.02.013
- Capelli L, Sironi S, Del Rosso R, Centola P, Rossi A, Austeri C. 2011. Olfactometric approach for the evaluation of citizens' exposure to industrial emissions in the city of Terni, Italy. Sci. Total. Environ. 409: 595-603. https://doi.org/10.1016/j.scitotenv.2010.10.054
- Hayes JE, Stevenson RJ, Stuetz RM. 2014. The impact of malodour on communities: a review of assessment techniques. Sci. Total Environ. 500-501: 395-407. https://doi.org/10.1016/j.scitotenv.2014.09.003
- Palmiotto M, Fattore E, Paiano V, Celeste G, Colombo A, Davoli E. 2014. Influence of a municipal solid waste landfill in the surrounding environment: toxicological risk and odor nuisance effects. Environ. Int. 68: 16-24. https://doi.org/10.1016/j.envint.2014.03.004
- Wu C, Liu J, Yan L, Chen H, Shao H, Meng T. 2015. Assessment of odor activity value coefficient and odor contribution based on binary interaction effects in waste disposal plant. Atmos. Environ. 103: 231-237. https://doi.org/10.1016/j.atmosenv.2014.12.045
- Lee YY, Jung H, Ryu HW, Oh KC, Jeon JM, Cho KS. 2018. Seasonal characteristics of odor and methane mitigation and the bacterial community dynamics in an on-site biocover at a sanitary landfill. Waste Manag. 71: 277-286. https://doi.org/10.1016/j.wasman.2017.10.037
- Jung H, Oh KC, Ryu HW, Jeon JM, Cho KS. 2019. Simultaneous mitigation of methane and odors in a biowindow using a pipe network. Waste Manag. 100: 45-56. https://doi.org/10.1016/j.wasman.2019.09.004
- Pecorini I, Rossi E, Iannelli R. 2020. Mitigation of methane, NMVOCs and odor emissions in active and passive biofiltration systems at municipal solid waste landfills. Sustainability 12: 3203. https://doi.org/10.3390/su12083203
- Lee YY, Hong S, Cho KS. 2019. Design and shelf stability assessment of bacterial agents for simultaneous removal of methane and odors. J. Environ. Sci. Health Part A-Tox. Hazard. Subst. Environ. Eng. 54: 906-913. https://doi.org/10.1080/10934529.2019.1607651
- Einola JK, Karhu AE, Rintala JA. 2008. Mechanically-biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions. Waste Manag. 28: 97-111. https://doi.org/10.1016/j.wasman.2007.01.002
- Qi G, Pan Z, Yamamoto Y, Andriamanohiarisoamanana FJ, Yamashiro T, Iwasaki M, et al. 2019. The survival of pathogenic bacteria and plant growth promoting bacteria during mesophilic anaerobic digestion in full-scale biogas plants. Anim. Sci. J. 90: 297-303. https://doi.org/10.1111/asj.13137
- Singh G, Jain VK, Singh A. 2017. Effect of temperature and other factors on anaerobic digestion process, responsible for bio gas production. J. Theor. Appl. Mech. 12: 637-657.
- Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. 2018. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8: 885-889. https://doi.org/10.1038/s41558-018-0259-x
- Yun J, Jung H, Ryu HW, Oh KC, Jeon JM, Cho KS. 2018a. Odor mitigation and bacterial community dynamics in on-site biocovers at a sanitary landfill in South Korea. Environ. Res. 166: 516-528. https://doi.org/10.1016/j.envres.2018.06.039
- Yun J, Oh KC, Jeon JM, Ryu HW, Cho KS. 2017. Seasonal emission characteristics of odors and methane from soil cover layers in a sanitary landfill. J. Odor Indoor Environ. 16: 315-328. https://doi.org/10.15250/joie.2017.16.4.315
- Dravnieks A, Jarke F. 1980. Odor threshold measurement by dynamic olfactometry: Significant operational variables. J. Air Pollut. Contr. Assoc. 30: 1284-1289. https://doi.org/10.1080/00022470.1980.10465182
- Pearce MM, Hilt EE, Rosenfeld AB, Zilliox MJ, Thomas-White K, Fok C, et al. 2014. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. mBio 5: e01283-01214.
- Li W, Fu L, Niu B, Wu S, Wooley J. 2012. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13: 656-668. https://doi.org/10.1093/bib/bbs035
- Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
- Park JE, Lee BT, Kim BY, Son A. 2018. Bacterial community analysis of stabilized soils in proximity to an exhausted mine. Environ. Eng. Res. 23: 420-429. https://doi.org/10.4491/eer.2018.040
- Lozupone C, Hamady M, Knight R. 2006. UniFrac-an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7: 371. https://doi.org/10.1186/1471-2105-7-371
- Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5: 1571-1579. https://doi.org/10.1038/ismej.2011.41
- Zhang Y, Zhang H, Jia B, Wang W, Zhu W, Huang T, et al. 2012. Landfill CH4 oxidation by mineralized refuse: effects of NH4+-N incubation, water content and temperature. Sci. Total. Environ. 426: 406-413. https://doi.org/10.1016/j.scitotenv.2012.03.083
- Bajar S, Singh A, Kaushik CP, Kaushik A. 2016. Evaluation and statistical optimization of methane oxidation using rice husk amended dumpsite soil as biocover. Waste Manag. 53: 136-143. https://doi.org/10.1016/j.wasman.2015.09.023
- Karthikeyan OP, Chidambarampadmavathy K, Nadarajan S, Heimann K. 2016. Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia. Environ. Sci. Pollut. Res. 23: 4346-4357. https://doi.org/10.1007/s11356-016-6174-7
- Ahoughalandari B, Cabral AR. 2017a. Influence of capillary barrier effect on biogas distribution at the base of passive methane oxidation biosystems: Parametric study. Waste Manag. 63: 172-187. https://doi.org/10.1016/j.wasman.2016.11.026
- Ahoughalandari B, Cabral AR. 2017b. Landfill gas distribution at the base of passive methane oxidation biosystems: Transient state analysis of several configurations. Waste Manag. 69: 298-314. https://doi.org/10.1016/j.wasman.2017.08.027
- Ahoughalandari B, Cabral AR. Leroueil S. 2018. Elements of design of passive methane oxidation biosystems: Fundamental and practical considerations about compaction and hydraulic characteristics on biogas migration. Geotech. Geol. Eng. 36: 2593-2609. https://doi.org/10.1007/s10706-018-0485-z
- Cho KS, Jung H. 2017. Methane mitigation technology using methanotrophs: A review. Microbiol. Biotechnol. Lett. 45: 185-199. https://doi.org/10.4014/mbl.1707.07005
- Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, et al. 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 27: 409-455. https://doi.org/10.1177/0734242X09339325
- Nanda S, Sarangi PK, Abraham J, 2012. Microbial biofiltration technology for odour abatement: An introductory review. J. Soil Sci. Environ. Manag. 3: 28-35.
- Yun J, Jung H, Choi H, Oh KC, Jeon JM, Ryu HW, et al. 2018b. Performance evaluation of an on-site biocomplex textile as an alternative daily cover in a sanitary landfill, South Korea. Waste Manag. Res. 36: 1137-1145. https://doi.org/10.1177/0734242X18806996
- Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, et al. 2007. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int. J. Syst. Evol. Microbiol. 57: 2299-2306. https://doi.org/10.1099/ijs.0.65098-0
- Bjornsdottir SH, Blondal T, Hreggvidsson GO, Eggertsson G, Petursdottir S, Hjorleifsdottir S, et al. 2006. Rhodothermus marinus: physiology and molecular biology. Extremophiles 10: 1-16. https://doi.org/10.1007/s00792-005-0466-z
- Gregoire P, Fardeau ML, Joseph M, Guasco S, Hamaide F, Biasutti S, et al. 2011. Isolation and characterization of Thermanaerothrix daxensis gen. nov., sp. nov., a thermophilic anaerobic bacterium pertaining to the phylum "Chloroflexi", isolated from a deep hot aquifer in the Aquitaine Basin. Syst. Appl. Microbiol. 34: 494-497. https://doi.org/10.1016/j.syapm.2011.02.004
- Nunoura T, Hirai M, Miyazaki M, Kazama H, Makita H, Hirayama H, et al. 2013. Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov. Microbes Environ. 28: 228-235. https://doi.org/10.1264/jsme2.ME12193
- Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA, Kolganova TV, Kublanov IV. 2013. Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. Int. J. Syst. Evol. Microbiol. 63: 86-92. https://doi.org/10.1099/ijs.0.041012-0
- De Bo I, Heyman J, Vincke J, Verstraete W, Van Langen-hove H. 2003. Dimethyl sulfide removal from synthetic waste gas using a flat poly(dimethylsiloxane)-coated composite mem-brane bioreactor. Environ. Sci. Technol. 37: 4228-4234. https://doi.org/10.1021/es020168f
- Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP. 2000. Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch. Microbiol. 173: 425-437. https://doi.org/10.1007/s002030000165
- Hayes AC, Liss SN, Allen DG. 2010. Growth kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol. Appl. Environ. Microbiol. 76: 5423-5431. https://doi.org/10.1128/AEM.00076-10
- Fang Y, Jia X, Chen L, Lin C, Zhang H, Chen J. 2019. Effect of thermotolerant bacterial inoculation on the microbial community during sludge composting. Can. J. Microbiol. 65: 750-761. https://doi.org/10.1139/cjm-2019-0107
- Wei Z, Huang Q, Ye Q, Chen Z, Li B, Wang J. 2015. Thermophilic biotrickling filtration of gas-phase trimethylamine. Atmos. Pollut. Res. 6: 428-433. https://doi.org/10.5094/APR.2015.047
- Tortosa G, Castellano-Hinojosa A, Correa-Galeote D, Bedmar EJ. 2017. Evolution of bacterial diversity during two-phase olive mill waste ("alperujo") composting by 16S rRNA gene pyrosequencing. Bioresour. Technol. 224: 101-111. https://doi.org/10.1016/j.biortech.2016.11.098
- Limbri H, Gunawan C, Thomas T, Smith A, Scott J, Rosche B. 2014. Coal-packed methane biofilter for mitigation of green house gas emissions from coal mine ventilation air. PLoS One 9: e94641. https://doi.org/10.1371/journal.pone.0094641
- Wijnands LM, Dufrenne JB, Zwietering MH, van Leusden FM. 2006. Spores from mesophilic Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains. Int. J. Food Microbiol. 112: 120-128. https://doi.org/10.1016/j.ijfoodmicro.2006.06.015
- Panda MK, Sahu MK, Tayung K. 2013. Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Indian J. Microbiol. 5: 159-165.
- Brooke AG, Watling EM, Attwood MM, Tempest DW. 1989. Environmental control of metabolic fluxes in thermotolerant methylotrophic Bacillus strains. Arch. Microbiol. 151: 268-273. https://doi.org/10.1007/BF00413141
- Al-Awadhi N, Mason CA. 1990. The process utility of thermotolerant methylotrophic bacteria: I. an evaluation in chemostat culture. Biotechnol. Bioeng. 36: 816-820. https://doi.org/10.1002/bit.260360810
- Eshinimaev BT, Medvedkova KA, Khmelenina VN, Suzina NE, Osipov GA, Lysenko AM, et al. 2004. New thermophilic methanotrophs of the genus Methylocaldum. Microbiology 73: 448-456. https://doi.org/10.1023/B:MICI.0000036991.31677.13
- Bodrossy L, Holmes EM, Holmes AJ, Kovacs KL, Murrell JC. 1997. Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch. Microbiol. 168: 493-503. https://doi.org/10.1007/s002030050527
- Hadad D, Geresh S, Sivan A. 2005. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 98: 1093-1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x
- Chebbi A, Mhiri N, Rezgui F, Ammar N, Maalej A, Sayadi S, et al. 2015. Biodegradation of malodorous thiols by a Brevibacillus sp. strain isolated from a Tunisian phosphate factory. FEMS Microbiol. Lett. 362: fnv097. https://doi.org/10.1093/femsle/fnv097
- Chen ZY, Wu WX, Min H, Chen MC, Zhao YH. 2000. Isolation and identification of two methane-utilizing strains of Streptomyces hygroscopicus. J. Zhejiang Univ. (Agriculture and Life Sciences) 26: 384-388.
- Mohamed EF, Awad G, Andriantsiferana C, El-Diwany AI. 2016. Biofiltration technology for the removal of toluene from polluted air using Streptomyces griseus. Environ. Technol. 37: 1197-1207. https://doi.org/10.1080/09593330.2015.1107623
- Szabo I, Benedek A, Szabo IM, Barabas G. 2000. Feather degradation with a thermotolerant Streptomyces graminofaciens strain. World J. Microbiol. Biotechnol. 16: 253-255. https://doi.org/10.1023/A:1008950032017
- Jung HM, Lee JS, Bae HM, Yi TH, Kim SY, Lee ST, et al. 2011. Inquilinus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 61: 201-204. https://doi.org/10.1099/ijs.0.018689-0
- Afzal I, Iqrar I, Shinwari ZK, Yasmin A. 2016. Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regul. 81: 399-408. https://doi.org/10.1007/s10725-016-0216-5
- Kim MK, Jung HY. 2007. Chitinophaga terrae sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 57: 1721-1724. https://doi.org/10.1099/ijs.0.64964-0
- de Boer L, Dijkhuizen L, Grobben G, Goodfellow M, Stackebrandt E, Parlett JH, Whitehead D, Witt D. 1990. Amycolatopsis methanolica sp. nov., a facultatively methylotrophic actinomycete. Int. J. Syst. Bacteriol. 40: 194-204. https://doi.org/10.1099/00207713-40-2-194
- Lechevalier MP, Prauser H, Labeda DP, Ruan JS. 1986. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int. J. Syst. Bacteriol. 36: 29-37. https://doi.org/10.1099/00207713-36-1-29
- Allison SD, Martiny JBH. 2008. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105: 11512-11519. https://doi.org/10.1073/pnas.0801925105
- Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA, 2005. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7: 301-313. https://doi.org/10.1111/j.1462-2920.2005.00695.x