• 제목/요약/키워드: Methanol conversion

검색결과 169건 처리시간 0.021초

곡유로 채널을 가지는 수증기-메탄올 개질기에서 유량 변화에 따른 메탄올 전환율 및 물질 전달에 관한 연구 (Study on Methanol Conversion Efficiency and Mass Transfer of Steam-Methanol Reforming on Flow Rate Variation in Curved Channel)

  • 장현;박인성;서정세
    • 대한기계학회논문집B
    • /
    • 제39권3호
    • /
    • pp.261-269
    • /
    • 2015
  • 본 연구에서는 전산유체역학 상용 코드를 이용하여 곡유로 채널형 수소 개질기에 대한 수치 해석적 연구를 수행하였다. 상용코드에서 제공하는 연소모델의 사전 검증을 위하여 원통 채널형 개질기 형를 가지는 선행연구모델(23)에 대한 수치해석을 선행하여 수행하였고, 95% 이상 일치하는 결과를 얻을 수 있었다. 선행연구모델의 수치해석을 통해 연소모델에 대한 해석 타당성검증이 완료된 후, 반응기 형태 변화가 메탄올 전환율과 수소생성에 미치는 영향을 파악하여 기존보다 유로의 길이가 증가한 곡유로 채널형 개질기를 설계하고, 유량조건($10/15/20{\mu}l/min$)을 변수로 수치해석을 수행하였다. 그 결과 원통 채널형 개질기와 곡유로 채널형 개질기에서 발생하는 유동 특성 및 물질전달 특성을 파악할 수 있었고, 그리고 유량에 따른 메탄올 전환율 및 수소 생성에 관한 유용한 정보를 얻을 수 있었다.

미강유 중 고농도 자유지방산의 에스테르화 (Esterification of High Concentration Free Fatty Acid in Rice Bran Oil)

  • 신용섭
    • 한국환경과학회지
    • /
    • 제17권2호
    • /
    • pp.211-224
    • /
    • 2008
  • Characteristics of the esterification reaction between free fatty acid in rice bran oil and methanol was investigated in the presence of catalysts, such as PTS(p-toluene sulfonic acid), Amberlyst 15 dry and SCX(silica gel based strong cation exchange resin). While reaction temperature was kept constant at $65^{\circ}C$, initial feed content of free fatty acid was varied from 100% to 1% by addition of pure free fatty acid which was previously made from rice bran oil. Also, the effect of mole ratio of methanol to fatty acid on the final conversion was examined. When esterification of pure free fatty acid was catalyzed by several acids, final conversions were increased in order of Amberlyst 15 dry, SCX and PTS. Using PTS catalyst, initially the reaction proceeded in homogeneous 2nd oder reaction mechanism. However, phase of reaction mixture changed from homogeneous to heterogeneous along the reaction time and then reaction rate was retarded by mass transfer resistance of methanol. Final conversion of free fatty acid in reaction mixture was depended on initial feed content of free fatty acid, and had maximum value at 30% of initial feed free fatty acid content for all kinds of catalysts used. And the final conversion was increased with mole ratio of methanol by the improvement of reaction rate. When initial feed free fatty acid content below 10% and the reaction was catalyzed by PTS, concentration of free fatty acid in reaction mixture was increased in the middle of reaction time by hydrolysis of triglyceride in reaction mixture. Also, if silica gel was added into the reaction mixture which had initial feed free fatty acid content below 50%, final conversion was increased by the adsorption of moisture produced. The SCX catalyst made the esterification reaction of free fatty acid to progress like in case of PTS catalyst. However, when initial feed free fatty acid content below 10%, concentration of free fatty acid in. reaction mixture was decreased monotonically and not increased in the middle of reaction time on the contrary to the case of PTS. Thus, SCX catalyst accomplished more high value of final conversion than PTS catalyst for the initial feed fatty acid content range from 50% to 5% In case of initial feed free fatty acid content of 1% and mole ratio of methanol was 2, concentration of free fatty acid in reaction mixture increased over the initial feed free fatty acid content for all kind of catalysts used. Although SCX catalyst was added into reaction mixture which had 1% of initial feed fatty acid content, final conversion was hardly raised by mole ratio of methanol.

헤테로폴리산 촉매에 의한 탄화수소로의 메탄올 전환반응(II) (Conversion of Methanol to Hydrocarbons over Heteropoly Acids(II))

  • 홍성수;임기철;이호인
    • 공업화학
    • /
    • 제4권2호
    • /
    • pp.335-341
    • /
    • 1993
  • 메탄올 전환반응에서, 헤테로폴리산 화합물의 산특성이 촉매활성에 미치는 영향에 대하여 연구하였다. 구리로 치환된 12-텅스토인산 촉매를 수소로 전처리하면 메탄올의 전환율과 프로판에 대한 선택도가 증가하였으며, 알루미늄이온으로 치환된 12-텅스토인산 촉매에서는 물로 전처리하면 산의 세기가 증가하였다. 반응물에 첨가된 물은 메탄올의 전환율을 감소시켰고, 전처리온도는 메탄올의 전환율에는 영향을 미치지 않았으나, propylene/propane의 생성비에는 영향을 미쳤다. 알루미튬이온에 의해 부분적으로 이온교환된 여러 가지의 12-텅스토인산염들은 알루미늄이온의 치환정도에 따라 서로 다른 촉매활성을 보여주었다.

  • PDF

신 촉매를 이용한 DME 전환율에 관한 연구 (A Study on DME Conversion rate using New Catalyst)

  • 정인상
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.123-128
    • /
    • 2011
  • It has been stand high in estimation to converse from Carbon dioxide to Dimethyl Ether in new alternative fuel energy division in 21C, especially Using of DME in point of view of transportation fuel has been discussed of a new clean energy which is very lower of exhaust gas than gasoline and diesel energy. In this paper it is used ZSM-5 and I developed new catalyst by addition of cerium to control acidity. The new catalyst was proved high conversion rate, when it was conversed from methanol to DME, there wasn't any additional material except DME and water, and I overlooked reaction temperature, reaction time, amount of catalyst, amount of added cerium, effect of water content in methanol, reaction temperature by making change of reaction time. I have conclude that conversion rate to DME was increased as increased of catalyst amounts. The best catalyst condition of without additional product was treated poisoning from ZSM-5 to 5% cerium and new catalyst was not effected in purity of fuel methanol.

NaBO2의 석출 방지를 위한 첨가제가 NaBH4 가수분해의 수소발생특성에 미치는 영향 (Effect of Additives for Prevention of NaBO2 Precipitation on Hydrogen Generation Properties of NaBH4 Hydrolysis)

  • 오택현;권세진
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.1-11
    • /
    • 2013
  • Additives such as glycerol, methanol, acetone, and ethanol were used to prevent $NaBO_2$ from precipitation, and their effects on hydrogen generation properties of $NaBH_4$ hydrolysis were investigated. When the concentration of additives was 5 wt%, the additives such as methanol, acetone, and ethanol could not prevent $NaBO_2$ precipitation. Although glycerol prevented $NaBO_2$ precipitation, conversion efficiency decreased to 78.0% due to its viscosity. Based on test results, hydrogen generation tests were also performed at various concentration of glycerol and methanol to investigate the concentration effects on hydrogen generation properties. As the concentration of glycerol increased from 1 wt% to 3 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 5 wt%, conversion efficiency decreased due to its viscosity. As the concentration of methanol increased from 5 wt% to 10 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 15 wt%, conversion efficiency decreased due to $NaB(OCH_3)_4$ precipitate. Although conversion efficiency decreased about 1% when 3 wt% glycerol was added, $NaBO_2$ precipitation was prevented. Consequently, addition of 3 wt% glycerol to $NaBH_4$ solution improves stability of hydrogen generation system.

산/알칼리 촉매에 의한 팔미트산 함유 유채유의 Biodiesel화 (Conversion of Rapeseed Oil Containing Palmitic Acid into Biodiesel by Acid/Alkali Catalysts)

  • 현영진;김해성
    • 한국응용과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.300-306
    • /
    • 2006
  • The esterification of palmitic acid in rapeseed oil and methanol emulsified by propylene glycol with PTSA(p-toluene sulfonic acid) was followed by the transesterification of rapeseed oil into biodiesel with 1(w/v)% GMS(glycerol monostearate) as an emulsifier using TMAH(tetramethyl ammonium hydroxide) catalysts at $60^{\circ}C$. The former reaction was optimized at the 1:20 of molar ratio of oil to methanol and 5wt% PTSA, and the latter was optimized at the 1:8 of molar ratio of oil to methanol and 0.8wt% TMAH. The overall conversion into biodiesel was 98% after 60min of reaction time at the 1:8 of molar ratio, 0.8wt% TMAH and $60^{\circ}C$. TMAH was a good catalyst to control the viscosity of biodiesel mixture.

ZSM-5 촉매상에서 메탄올의 전환반응, 반응특성과 안정성 (Reaction Characteristics and Catalytic Stability for the Methanol Conversion over ZSM-5 Catalyst)

  • 박상언;전학제
    • 대한화학회지
    • /
    • 제25권3호
    • /
    • pp.172-176
    • /
    • 1981
  • 형상 선택성 ZSM-5 제올라이트 촉매상에서 메탄올로부터 $C_2-C_{10}4의 탄화수소 형성을 조사하였다. 메탄올로 부터 dimethylether를 거쳐 생성되는 $C_2-C_5$의 올레핀들이 ZSM-5의 강한 산점에서 고리화 반응등에 의하여 방향족 화합물이 많이 포함된 탄화수소화합물로 전환된다고 생각된다. 메탄올의 전환반응에 대한 ZSM-5 촉매의 높은 활성과 활성저하에 대한 안정성은 특유의 교차되는 세공관구조와 소수성에 기인하는 것으로 보인다.

  • PDF

곡유로 메탄올-수증기 개질기 공극률 및 온도 변화에 따른 물질 전달 및 메탄올 전환율에 대한 수치해석적 연구 (A Numerical Study on Mass Transfer and Methanol Conversion Efficiency According to Porosity and Temperature Change of Curved Channel Methanol-Steam Reformer)

  • 성홍석;이충호;서정세
    • 대한기계학회논문집B
    • /
    • 제40권11호
    • /
    • pp.745-753
    • /
    • 2016
  • 초소형 연료전지용 메탄올-수증기 개질기의 경우 저온상태($250^{\circ}C$ 이하)에서 수증기와 반응하여 개질반응이 일어나기 때문에 수소를 효율적으로 생산할 수 있다. 본 연구는 이러한 개질기에 대하여 수치해석적 연구를 수행하였다. 먼저, 개질기 벽면 온도를 100, 140, 180, $220^{\circ}C$로 설정하였고 메탄올 전환율은 각 0, 0.072, 3.83, 46.51%로 나타났다. 다음으로 촉매의 공극률을 0.1, 0.35, 0.6, 0.85로 설정하였고, 메탄올 전환율에는 큰 차이가 없었으나 압력강하 값이 각 4645.97, 59.50, 5.12, 0.45 kPa로 나타났다. 메탄올-수증기 개질기는 $180^{\circ}C$ 이하의 온도에서는 거의 반응하지 않으며 공극률은 개질기를 흐르는 유체가 개질기와 충분히 접촉하여 활성화 에너지를 낮추어 준다면 메탄올 전환율에 크게 영향을 미치지 않는다는 것을 확인하였다.

메탄올 수증기개질을 위한 ZrO2 펠트 기반 Cu/Zn 촉매 특성 연구 (Characteristics of ZrO2 Felt Supported Cu/Zn Catalyst for Methanol Steam Reforming)

  • 최은영
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.129-136
    • /
    • 2017
  • Characteristics of $ZrO_2$ felt supported Cu/Zn catalysts have been investigated for the production of hydrogen via methanol steam reforming. Cu and Zn in different weight percent were loaded using wet impregnation over $ZrO_2$ felt support. The catalysts were characterized with BET and FE-SEM. The performance of these synthesized catalysts were investigated at SCR=1.5, $GHSV=2000h^{-1}$, temperature=$300{\sim}400^{\circ}C$, and pressure=2.5~19.5 barA. The results showed that the $Cu^{32.5}Zn^{7.5}ZrO_2$ catalyst was most active in terms of methanol conversion and hydrogen production. The methanol conversion in steam reforming of methanol was 84.6% at 19.5 barA and furnace $400^{\circ}C$ over $Cu^{32.5}Zn^{7.5}ZrO_2$ catalyst. The catalysts prepared using $ZrO_2$ felt show higher reactor temperature than the pellet type catalyst at same furnace temperature.

High Alloying Degree of Carbon Supported Pt-Ru Alloy Nanoparticles Applying Anhydrous Ethanol as a Solvent

  • Choi, Kwang-Hyun;Lee, Kug-Seung;Jeon, Tae-Yeol;Park, Hee-Young;Jung, Nam-Gee;Chung, Young-Hoon;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권1호
    • /
    • pp.19-24
    • /
    • 2010
  • Alloying degree is an important structural factor of PtRu catalysts for direct methanol fuel cells (DMFC). In this work, carbon supported PtRu catalysts were synthesized by reduction method using anhydrous ethanol as a solvent and $NaBH_4$ as a reducing agent. Using anhydrous ethanol as a solvent resulted in high alloying degree and good dispersion. The morphological structure and crystallanity of synthesized catalysts were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM). CO stripping and methanol oxidation reaction were measured. Due to high alloying degree catalyst prepared in anhydrous ethanol, exhibited low onset potential for methanol oxidation and negative peak shift of CO oxidation than commercial sample. Consequently, samples, applying ethanol as a solvent, exhibited not only enhanced CO oxidation, but also increased methanol oxidation reaction (MOR) activity compared with commercial PtRu/C (40 wt%, E-tek) and 40 wt% PtRu/C prepared in water solution.