DOI QR코드

DOI QR Code

A Numerical Study on Mass Transfer and Methanol Conversion Efficiency According to Porosity and Temperature Change of Curved Channel Methanol-Steam Reformer

곡유로 메탄올-수증기 개질기 공극률 및 온도 변화에 따른 물질 전달 및 메탄올 전환율에 대한 수치해석적 연구

  • Seong, Hong Seok (Graduate school of Mechanical&Aerospace Engineering, Gyeongsang Nat'l Univ.) ;
  • Lee, Chung Ho (Graduate school of Mechanical&Aerospace Engineering, Gyeongsang Nat'l Univ.) ;
  • Suh, Jeong Se (School of Mechanical Engineering, Gyeongsang Nat'l Univ. & ERI)
  • 성홍석 (경상대학교 기계항공공학부) ;
  • 이충호 (경상대학교 기계항공공학부) ;
  • 서정세 (경상대학교 기계공학부&공학연구원)
  • Received : 2016.01.29
  • Accepted : 2016.09.18
  • Published : 2016.11.01

Abstract

Micro methanol-steam reformer for fuel cell can effectively produce hydrogen as reforming response to steam takes place in low temperature (less than $250^{\circ}C$). This study conducted numerical research on this reformer. First, study set wall temperature of the reformer at 100, 140, 180 and $220^{\circ}C$ while methanol conversion efficiency was set in 0, 0.072, 3.83 and 46.51% respectively. Then, porosity of catalyst was set in 0.1, 0.35, 0.6 and 0.85 and although there was no significant difference in methanol conversion efficiency, values of pressure drop were 4645.97, 59.50, 5.12 and 0.45 kPa respectively. This study verified that methanol-steam reformer rarely responds under the temperature of $180^{\circ}C$ and porosity does not have much effect on methanol conversion efficiency if the fluid flowing through reformer lowers activation energy by sufficiently contacting reformer.

초소형 연료전지용 메탄올-수증기 개질기의 경우 저온상태($250^{\circ}C$ 이하)에서 수증기와 반응하여 개질반응이 일어나기 때문에 수소를 효율적으로 생산할 수 있다. 본 연구는 이러한 개질기에 대하여 수치해석적 연구를 수행하였다. 먼저, 개질기 벽면 온도를 100, 140, 180, $220^{\circ}C$로 설정하였고 메탄올 전환율은 각 0, 0.072, 3.83, 46.51%로 나타났다. 다음으로 촉매의 공극률을 0.1, 0.35, 0.6, 0.85로 설정하였고, 메탄올 전환율에는 큰 차이가 없었으나 압력강하 값이 각 4645.97, 59.50, 5.12, 0.45 kPa로 나타났다. 메탄올-수증기 개질기는 $180^{\circ}C$ 이하의 온도에서는 거의 반응하지 않으며 공극률은 개질기를 흐르는 유체가 개질기와 충분히 접촉하여 활성화 에너지를 낮추어 준다면 메탄올 전환율에 크게 영향을 미치지 않는다는 것을 확인하였다.

Keywords

References

  1. Jang, H., Park I. S. and Suh J. S., 2015, "Study on Methanol Conversion Efficiency and Mass Transfer of Steam-Methanol Reforming on Flow Rate Variationin Curved Channel," Trans. Korean Soc. Mech. Eng. B, Vol. 39, No. 3, pp. 261-269. https://doi.org/10.3795/KSME-B.2015.39.3.261
  2. Hohlein, B., Boe, M., Bogild-Hansen, J., Brockerhoff, P., Colsman, G., Emonts, B., Menzer, R. and Riedel, E., 1996, "Hydrogen from Methanol for Fuel Cells in Mobile Systems: Development of a Compact Reformer," Journal of Power Sources, Vol. 61, pp. 143-147. https://doi.org/10.1016/S0378-7753(96)02357-9
  3. Zhou, W. J., Song, S. Q., Lia, W. Z., Zhou, Z. H., Sun, G. Q., Xin, Q., Douvartzidesc, S. and Tsiakarasc, P., 2005, "Direct Ethanol Fuel Cells Based on PtSn Anodes : the Effect of Sn Content on the Fuel Cell Performance," Journal of Power Sources, Vol. 140, pp. 50-58. https://doi.org/10.1016/j.jpowsour.2004.08.003
  4. Hayase, M., Kawase, T. and Hatsuzawa, T., 2004, "Miniature 250 mm Thick Fuel Cell with Monolithically Fabricated Silicon Electrodesm," Electrochemical and Solid-State Letters, Vol. 7, No. 8, pp. A231-234. https://doi.org/10.1149/1.1756859
  5. Suh, J. S., Lee, M. T., Grief, R. and Grigoropoulos, C. P., 2007, "A Study of Steam Methanol Reforming in a Microreactor," J. Power Sources, Vol. 173, pp. 458-466. https://doi.org/10.1016/j.jpowsour.2007.04.038
  6. Lee, C. K., 2006, "As Oil Alternative Energy, Hydrogen Energy and Fuel Cell," KIDA, Vol. 333, pp. 72-79.
  7. Kim, S., Han, H. S., Kim, S. Y. and Hyun, J. M., 2011, "Effect of Boundary Temperature Distributions on the Outlet Gas Composition of the Cylindrical Steam Reformer," Proceeding of SAREK, pp. 383-391.