• 제목/요약/키워드: Methanol Flame

검색결과 44건 처리시간 0.021초

화점높이 변화에 따른 Pool Fire의 연소특성 (Combustion Characteristics of Pool Fire by Height of Fire Source)

  • 박형주;차종호
    • 한국산학기술학회논문지
    • /
    • 제11권11호
    • /
    • pp.4671-4676
    • /
    • 2010
  • 화점높이 변화에 따른 풀 화재의 연소특성을 알아보기 위하여 인화성액체인 메탄올과 노르말 헵탄을 $100mm{\times}100mm{\times}50mm$ 크기의 사각형 용기에 내에 넣고 연소실험을 하였다. 용기의 재질은 스테인레스를 사용하였다. 연소시간, 질량감소속도, 화염온도, 화염높이 및 외부에서 화염으로의 공기유입속도 등을 측정하였으며 연소시 화염의 거동은 비디오카메라를 이용하여 촬영하였다. 실험을 통해서 화점의 높이가 증가할수록 외부에서 화염으로 유입되는 차가운 공기의 유입량이 증가하여 풀 화재의 연소특성이 감소함을 확인 할 수 있었다.

국소화염특성을 고려한 예혼합화염의 소염특성에 관한 수치해석 (Numerical study on extinction of premixed flames using local flame properties)

  • 정대헌;정석호
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.125-131
    • /
    • 1997
  • The extinction of premixed flames under the influence of stretch is studied numerically. A wide range of fuel (hydrogen, ethylene, acetylene, methane, propane and methanol) and air mixtures are established in an opposed jet and their flame properties such as flame speed, flame thickness, thermal diffusivity, and stretch rate at extinction are computed. Computations are made using several chemical kinetic mechanism (Smooke, Kee et al. and Peters). The major result is that, in contrast to the various previous claims of extinction Karlovitz number varying over three orders of magnitude, it is found to be constant around two for all of the mixtures tested. That is, premixed flames are extinguished when the physical flow time decreases (due to increased stretch rate) to the point where it approximately equals the chemical reaction time. Here the relevant chemical reaction time is not the one computed using the one-dimensional flame properties as originally suggested in the formulation of Karlovitz number, but rather it is the one obtained using the stretched flame properties which fully reflect the effect of straining on the flame structure.

산화제 공급 방법에 따른 메탄올-산소 촉매연소기 특성 (Characteristics of Methanol-O2 Catalytic Burner according to Oxidant Supply Method)

  • 지현진;이정훈;최은영;양성호
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.82-88
    • /
    • 2020
  • Recently, a fuel reforming plant for supplying high purity hydrogen has been studied to increase the operation time of underwater weapon systems. Since steam reforming is an endothermic reaction, it is necessary to continuously supply heat to the reactor. A fuel reforming plant needs a methanol-O2 catalytic burner to obtain heat and supply heat to the reformer. In this study, two types of designs of a catalytic burner are presented and the results are analyzed through the experiments. The design of the catalytic burner is divided into that the O2 supply direction is perpendicular to the methanol flow direction (Design 1) and the same as the methanol flow direction (Design 2). In case of Design 1, backfire and flame combustion occurred in the mixing space in front of the catalyst, and in the absence of the mixing space, combustion reaction occurred only in a part of the catalyst. For above reasons, Design 1 could not increase the exhaust gas temperature to 750℃. In Design 2, no flashback and flame combustion were observed, the exhaust gas could be maintained up to 750℃. However, the O2 distributor was exposed to high temperatures, resulting in thermal damage.

이종연료 층상분사를 적용한 디젤엔진에서 광 계측을 이용한 연소해석 (An Combustion Diagnosis Using Optical Measurement in D. I Diesel Engine with Dual Fuel Stratified Injection System)

  • 안현찬;강병무;염정국;정성식;하종률
    • 한국분무공학회지
    • /
    • 제7권3호
    • /
    • pp.31-37
    • /
    • 2002
  • In previous study, diesel-methanol stratified injection system is manufactured and applied to a D.I. diesel engine in order to realize combustion improvement using methanol, which is oxygenated fuel with large latent heat. We know that NOx and soot is reduced by stratified injection of diesel fuel-methanol. Therefore, in the present study, combustion diagnosis using optical measurement is tried to make clear effect of methanol on simultaneous reduction of NOx and soot. Two-color method is used to measure flame temperature and KL value, which is approximately proportional to the soot consentration along the optical path. Laser induced scattering method was used to measure distribution of soot at two dimensional area. Also, it is compared exhaust characteristics of NOx and soot with results of optical measurement.

  • PDF

Pool 화재의 연소 특성에 관한 연구 (A Study on the Characteristics of Pool Fire)

  • 오규형;나선종;이성은
    • 한국화재소방학회논문지
    • /
    • 제18권3호
    • /
    • pp.39-44
    • /
    • 2004
  • Pool화재의 화염 거동을 알아보기 위하여 산업에서 많이 사용되는 가연성 액체인 아세톤 메탄을 헥산 그리고 헵탄을 직경 50mrn에서 400nun까지의 용기 내에 넣고 연소실험을 하였다. 용기의 재질은 스테인리스와 구리를 사용하였다. 연소시간과 용기 벽면의 온도 및 열유속 등을 측정하였으며 연소 시 화염의 거동은 비디오카메라를 이용하여 촬영하였다. 실험을 통해서 연소속도와 화염의 높이는 용기 직경의 증가와 함께 증가하였으며 화염의 와류 생성 주기는 용기 직경에 반비례하였다. 또한 pool화재의 특성은 액체연료의 물리 화학적 성질과 용기의 재질에 의해서도 영향을 받는 것을 알 수 있었다.

건축물 외벽화재시 Flame Trajectory 추정을 위한 실험적 연구 (Experimental Study on Flame Trajectory in Building External Walls Fire)

  • 신이철;박계원;정재군
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.79-80
    • /
    • 2016
  • In the event of a fire on the outer walls of an architectural structure, through real scale experiments with the purpose of estimating the Flame Trajectory, the behavior and risks of expanded combustion to an upper architectural compartment of the Fire Plume Ejected from an Opening according to changes in the aspect ratio of the opening were examined. The results showed that the more the heat release rate of the fire source increased, the heat capacity of the Fire Plume Ejected from the Opening also increased, and for the case of heptane when compared with methanol or ethanol, the results showed a trend for a significant amount of unburned gas to remain. The results also showed that the larger the aspect ratio was, the more likely it was for the Flame Trajectory to approach the outer walls and rise up. In each of the experiment conditions, as the flame rose from the lower part of the wall to the upper part of the wall, a steady decrease was shown for the temperature distribution. Also by quantitatively analyzing the amount of unburned gas that remained, a method to estimate the temperature of the Fire Plume Ejected from an Opening for a traverse opening was implemented.

  • PDF

가연성물질의 자연발화온도 측정 및 예측 - 메탄올과 에탄올 - (Measurement and Prediction of Autoignition Temperature(AIT) of Flammable Substances - Methanol and Ethanol -)

  • 하동명
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.54-60
    • /
    • 2004
  • Flammable substances are frequently used chemical industry processes. An accurate knowledge of the ALTs(Autoignition Temperatures) is important in developing appropriate prevention and control measures in industrial fire protection. The AITs describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The AITs are dependent upon many factors, namely initial temperature, pressure, volume, fuel/air stoichiometry, catalyst material, concentration of vapor, ignition delay. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for methanol and ethanol. The A.A.P.E.(Average Absolute Percent Error) and the A.A.D.(Average Absolute Deviation) of the experimental and the calculated delay times by the AITs for methanol were 14.59 and 1.76 respectively. Also the A.A.P.E. and the A.A.D. of the experimental and the calculated delay times by the ATIs for ethanol were 8.33 and 0.88.

메탄올 혼합 연료의 기화율 변화에 따른 연소특성에 관한 실험적 연구 (A Study on the Combustion Characteristics according to Evaporation rate of Methanol - Blended Fuel)

  • 조행묵
    • 한국분무공학회지
    • /
    • 제2권2호
    • /
    • pp.24-34
    • /
    • 1997
  • This paper describes the investigation of combustion characteristics of gasoline-methanol blend in constant volume combustion chamber. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaporating a blend fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deteriorated by decreasing surrounding temperature of fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deter orated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for methanol blend fuel was influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

A Study on Smoke Movement in Room Fires with Various Pool Fire Location

  • Jeong, Jin-Yong;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1485-1496
    • /
    • 2002
  • In order to investigate the fire-induced smoke movement in a three-dimensional room with an open door, numerical and experimental study was performed. The center, wall, and corner fire plumes for various sized fires were studied experimentally in a rectangular pool fire using methanol as a fuel. The numerical results from a self-developed SMEP (Smoke Movement Estimating Program) field model were compared with experimental results obtained in this and from literature. Comparisons of SMEP and experimental results have shown reasonable agreement. As the fire strength became larger for the center fires, the air mass flow rate in the door, average hot layer temperature, flame angle and mean flame height were observed to increase but the doorway-neutral-planeheight and the steady-state time were observed to decrease. Also as the wall effect became larger in room fires, the hot layer temperature, mean flame height, doorway-neutral-planeheight and steady-state time were observed to increase. In the egress point of view considering the smoke filling time and the early spread of plume in the room space, the results of the center fire appeared to be more dangerous as compared with the wall and the corner fire. Thus it is necessary to consider the wall effect as an important factor in designing efficient fire protection systems.

실내공간에서 화재 발생위치에 따른 연기거동에 대한 실험연구 (An Experimental Study of Smoke Movement of the Various Fire Location in Room)

  • 유홍선;정진용;이재하;홍기배
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.703-709
    • /
    • 2002
  • In order to investigate the smoke movement in three dimensional room fires, the center fire, wall fire and corner fire plume in different sized fires were studied experimentally by rectangular pool fire using methanol as a fuel. As the fire size became larger for the center fires placed at the center of the floor, the air flow rate entrained through the opening, average hot layer temperature, flame angle deflected backwards and mean flame height was observed to increase. On the other hand, as the fire size became smaller, the neutral plane height in the door and time reached steady-state was observed to decrease. The average hot layer temperature, mean flame height and doorway neutral plane height obtained from comer fire were higher than those produced by wall fires and center fires. The simple model for describing the effect of walls on the mean flame height was presented. It was shown that the model provides a good description of the present measurements, when used with the assumption by Hansell(1993), that the increase of the average flame height is equal to the ratio of the open to the total perimeters of the trays. Also the two models for predicting the effects of walls on the mean flame height were presented. These models overestimated the measured values of the mean flame height above fuel trays close to a wall and in a corner by approximately 19-26%, respectively.