• Title/Summary/Keyword: Meteorological station

Search Result 514, Processing Time 0.032 seconds

Temporal and Spatial correlation of Meteorological Data in Sumjin River and Yongsan River Basins (섬진강 및 영산강 유역 기상자료의 시.공간적 상관성)

  • 김기성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.6
    • /
    • pp.44-53
    • /
    • 1999
  • The statistical characteristics of the factors related to the daily rainfall prediction model are analyzed . Records of daily precipitation, mean air temperature, relative humidity , dew-point temperature and air pressure from 1973∼1998 at 8 meteorological sttions in south-western part of Korea were used. 1. Serial correlatino of daily precipitaiton was significant with the lag less than 1 day. But , that of other variables were large enough until 10 day lag. 2. Crosscorrelation of air temperature, relative humidity , dew-point temperature showed similar distribution wiht the basin contrours and the others were different. 3. There were significant correlation between the meteorological variables and precipitation preceded more than 2 days. 4. Daily preciption of each station were treated as a truncated continuous random variable and the annual periodic components, mean and standard deviation were estimated for each day. 5. All of the results could be considered to select the input variables of regression model or neural network model for the prediction of daily precipitation and to construct the stochastic model of daily precipitation.

  • PDF

Combined Microwave Radiometer and Micro Rain Radar for Analysis of Cloud Liquid Water

  • Yang, Ha-Young;Chang, Ki-Ho;Kang, Seong-Tae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.12-15
    • /
    • 2013
  • To combine the micro rain radar and microwave radiometer cloud liquid water, we estimate the cloud physical thickness from the difference between the MTSAT-1R cloud top height and cloud base height of visual observation of Daegwallyeong weather station, and the cloud liquid water path of micro rain radar is obtained by multiplying the liquid water content of micro rain radar and the estimated cloud physical thickness. The trend of microwave radiometer liquid water path agrees with that of the micro rain radar during small precipitation. We study these characteristics of micro rain radar and microwave radiometer for small precipitation to obtain the combined cloud water content of micro rain radar and microwave radiometer, constantly operated regardless to the rainfall.

Relationship between Vegetation Index and Meteorological Element in Yongdam Catchment (용담댐시험유역 기상자료와 식생지수의 상관성 분석)

  • Lee, Hyeong-keun;Hwang, Ji-hyeong;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.983-989
    • /
    • 2018
  • The real-time monitoring of surface vegetation is essential for the management of droughts, vegetation growth, and water resources. The availability of land cover maps based on remotely collected data makes the monitoring of surface vegetation easier. The vegetation index in an area is likely to be proportional to meteorological elements there such as air temperature and precipitation. This study investigated relationship between vegetation index based on Moderate Resolution Image Spectroradiometer (MODIS) and ground-measured meteorological elements at the Yongdam catchment station. To do this, 16-day averaged data were used. It was found that the vegetation index is well correlated to air temperature but poorly correlated to precipitation. The study provides some intuition and guidelines for the study of the droughts and ecologies in the future.

Variogram Estimation of Tropospheric Delay by Using Meteorological Data

  • Kim, Bu-Gyeom;Kim, Jong-Heon;Kee, Changdon;Kim, Donguk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.271-278
    • /
    • 2021
  • In this paper, a tropospheric delay error was calculated by using meteorological data collect from weather station and Saastamoinen model, and an empirical variogram of the tropospheric delay in the Korean peninsula was estimated. In order to estimate the empirical variogram of the tropospheric delay according to weather condition, sunny day, rainy day, and typhoon day were selected as analysis days. Analysis results show that a maximum correlation range of the empirical variogram on sunny day was about 560 km because there is overall trend of the tropospheric delay. On the other hand, the maximum correlation range of the empirical variogram on rainy was about 150 km because the regional variation was large. Although there is regional variation when the typhoon exists, there is a trend of the tropospheric delay due to a movement of the typhoon. Therefore, the maximum correlation range of the empirical variogram on typhoon day was about 280 km which is between sunny and rainy day.

LRIT DESIGN OF COMS

  • KOO In-Hoi;PARK Durk-Jong;SEO Seok-Bae;AHN Sang-Il;KIM Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.305-308
    • /
    • 2005
  • The COMS, Korea's first geostationary multipurpose satellite program will accommodate 3 kind of payloads; Ka-Band communication transponder, GOCI (Geostationary Ocean Color Imager), and MI (Meteorological Imager). MI raw data will be transferred to ground station via L-band link. The ground station will perform image data processing for raw data, generate them into the LRIT/HRIT format, the user dissemination data recommended by the CGMS. The LRIT/HRIT are disseminated via satellite to user stations. This paper shows the COMS LRIT data generation procedure based on COMS LRIT specification and its verification results using the LRIT user station.

  • PDF

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part I - Analysis of Detailed Flows (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part I - 상세 흐름 분석)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1643-1652
    • /
    • 2020
  • To investigate the characteristics of detailed flows in a building-congested district, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. For realistic numerical simulations, we used the meteorological variables such as wind speeds and directions and potential temperatures predicted by LDAPS as the initial and boundary conditions of the CFD model. We trilinearly interpolated the horizontal wind components of LDAPS to provide the initial and boudnary wind velocities to the CFD model. The trilinearly interpolated potential temperatures of LDAPS is converted to temperatures at each grid point of the CFD model. We linearly interpolated the horizontal wind components of LDAPS to provide the initial and boundary wind velocities to the CFD model. The linearly interpolated potential temperatures of LDAPS are converted to temperatures at each grid point of the CFD model. We validated the simulated wind speeds and directions against those measured at the PKNU-SONIC station. The LDAPS-CFD model reproduced similar wind directions and wind speeds measured at the PKNU-SONIC station. At 07 LST on 22 June 2020, the inflow was east-north-easterly. Flow distortion by buildings resulted in the east-south-easterly at the PKNU-SONIC station, which was the similar wind direction to the measured one. At 19 LST when the inflow was southeasterly, the LDAPS-CFD model simulated southeasterly (similar to the measured wind direction) at the PKNU-SONIC station.

The Influence of Meteorological Factors on PM10 Concentration in Incheon (기상인자가 미세먼지 농도에 미치는 영향)

  • Shin, Moon-Khee;Lee, Choong-Dae;Ha, Hyun-Sup;Choe, Choon-Suck;Kim, Yong-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.322-331
    • /
    • 2007
  • In this study, we have analyzed $PM_{10}$ concentration measured at Incheon Regional Air Monitoring Network (10 stations) and meteorological data at Incheon Weather Station to investigate factors (i.e. wind direction, wind speed, relative humidity, major meteorological phenomenon, and sea-land breezes existence) influencing $PM_{10}$ concentration in Incheon during 2005. Statistical differences among meteorological factors were assessed by Kruskal-Wallis test or Mann-Whitney U test. The main conditions causing high $PM_{10}$ concentration are summarized below; 1. When westerly wind prevailed (however, $PM_{10}$ decreased when winds were blowing from the east or north). 2. When the winds were calm, owing to accumulation of nearby emissions under stagnant conditions, or when the wind speed is in excess of 6 m/s, which shows the effect of fugitive dust produced by wind erosion. 3. Under the condition of high relative humidity and poor diffusion based on meteorological phenomenon such as fog, mist, and haze. 4. When the Sea-Land breezes existed, which occurred 70 days in Incheon during 2005 and contributed significantly to high $PM_{10}$ concentration in the coastal urban area. In conclusion, we have found that the meteorological factors have influence on $PM_{10}$ concentration in Incheon.

The Effects of Atmospheric River Landfalls on Precipitation and Temperature in Korea (Atmospheric River 상륙이 한반도 강수와 기온에 미치는 영향 연구)

  • Moon, Hyejin;Kim, Jinwon;Guan, Bin;Waliser, Duane E.;Choi, Juntae;Goo, Tae-Young;Kim, Youngmi;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.343-353
    • /
    • 2019
  • The seasonal climatology of atmospheric rivers (ARs) and their effects on the seasonal precipitation and temperature in Korea are examined using the AR chronology obtained by a methodology based on the vertically integrated water vapor transport (IVT) in conjunction with a fine-scale gridded analysis of station precipitation and temperature. ARs are found to affect Korea most heavily in the warm season with minimal impacts in winter. This contrasts the AR effects in the western North America and the Western Europe that are affected most in winters. Significant portions of precipitation in Korea are associated with AR landfalls for all seasons; over 35% (25%) of the summer (winter) rainfall in the southern part of the Korean peninsula. The percentage of AR precipitation over Korea decreases rapidly towards the north. AR landfalls are also associated with heavier-than-normal precipitation events for all seasons. AR landfalls are associated with above-normal temperatures in Korea; the warm anomalies increase towards the north. The warm anomalies during AR landfalls are primarily related to the reduction in cold episodes as the AR landfalls in Korea are accompanied by anomalous southerlies/southwesterlies.

Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula (여름철 한반도 강수의 시·공간적 특성 연구)

  • In, So-Ra;Han, Sang-Ok;Im, Eun-Soon;Kim, Ki-Hoon;Shim, JaeKwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.159-171
    • /
    • 2014
  • This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.

Development and Wind Speed Evaluation of Ultra High Resolution KMAPP Using Urban Building Information Data (도시건물정보를 반영한 초고해상도 규모상세화 수치자료 산출체계(KMAPP) 구축 및 풍속 평가)

  • Kim, Do-Hyoung;Lee, Seung-Wook;Jeong, Hyeong-Se;Park, Sung-Hwa;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.179-189
    • /
    • 2022
  • The purpose of this study is to build and evaluate a high-resolution (50 m) KMAPP (Korea Meteorological Administration Post Processing) reflecting building data. KMAPP uses LDAPS (Local Data Assimilation and Prediction System) data to detail ground wind speed through surface roughness and elevation corrections. During the detailing process, we improved the vegetation roughness data to reflect the impact of city buildings. AWS (Automatic Weather Station) data from a total of 48 locations in the metropolitan area including Seoul in 2019 were used as the observation data used for verification. Sensitivity analysis was conducted by dividing the experiment according to the method of improving the vegetation roughness length. KMAPP has been shown to improve the tendency of LDAPS to over simulate surface wind speeds. Compared to LDAPS, Root Mean Square Error (RMSE) is improved by approximately 23% and Mean Bias Error (MBE) by about 47%. However, there is an error in the roughness length around the Han River or the coastline. Accordingly, the surface roughness length was improved in KMAPP and the building information was reflected. In the sensitivity experiment of improved KMAPP, RMSE was further improved to 6% and MBE to 3%. This study shows that high-resolution KMAPP reflecting building information can improve wind speed accuracy in urban areas.