DOI QR코드

DOI QR Code

The Effects of Atmospheric River Landfalls on Precipitation and Temperature in Korea

Atmospheric River 상륙이 한반도 강수와 기온에 미치는 영향 연구

  • Moon, Hyejin (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Jinwon (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Guan, Bin (Jet Propulsion Laboratory, California Institute of Technology) ;
  • Waliser, Duane E. (Joint Institute for Regional Earth System Science and Engineering, University of California) ;
  • Choi, Juntae (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Goo, Tae-Young (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Youngmi (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Byun, Young-Hwa (Climate Research Division, National Institute of Meteorological Sciences)
  • 문혜진 (국립기상과학원 기후연구과) ;
  • 김진원 (국립기상과학원 기후연구과) ;
  • ;
  • ;
  • 최준태 (국립기상과학원 기후연구과) ;
  • 구태영 (국립기상과학원 기후연구과) ;
  • 김영미 (국립기상과학원 기후연구과) ;
  • 변영화 (국립기상과학원 기후연구과)
  • Received : 2019.06.04
  • Accepted : 2019.09.25
  • Published : 2019.11.30

Abstract

The seasonal climatology of atmospheric rivers (ARs) and their effects on the seasonal precipitation and temperature in Korea are examined using the AR chronology obtained by a methodology based on the vertically integrated water vapor transport (IVT) in conjunction with a fine-scale gridded analysis of station precipitation and temperature. ARs are found to affect Korea most heavily in the warm season with minimal impacts in winter. This contrasts the AR effects in the western North America and the Western Europe that are affected most in winters. Significant portions of precipitation in Korea are associated with AR landfalls for all seasons; over 35% (25%) of the summer (winter) rainfall in the southern part of the Korean peninsula. The percentage of AR precipitation over Korea decreases rapidly towards the north. AR landfalls are also associated with heavier-than-normal precipitation events for all seasons. AR landfalls are associated with above-normal temperatures in Korea; the warm anomalies increase towards the north. The warm anomalies during AR landfalls are primarily related to the reduction in cold episodes as the AR landfalls in Korea are accompanied by anomalous southerlies/southwesterlies.

Keywords

References

  1. Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.
  2. Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of california. Water, 3, 445-478, doi:10.3390/w3020445.
  3. Espinoza, V., D. E. Waliser, B. Guan, D. A. Lavers, and F. M. Ralph, 2018: Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett., 45, 4299-4308, doi:10.1029/2017GL076968.
  4. Gimeno, L., R. Neito, M. Vazquez, and D. A. Lavers, 2014: Atmospheric rivers: a mini-review, Front. Earth Sci., 2, doi:10.3389/feart.2014.00002.
  5. Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12514-12535, doi:10.1002/2015JD024257.
  6. Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.
  7. Kamae, Y., W. Mei, and S.-P. Xie, 2017a: Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. J. Meteor. Soc. Japan, 95, 411-431, doi:10.2151/jmsj.2017-027.
  8. Kamae, Y., W. Mei, S.-P. Xie, M. Naoi, and H. Ueda, 2017b: Atmospheric rivers over the Northwestern Pacific: climatology and interannual variability. J. Climate, 30, 5605-5619, doi:10.1175/JCLI-D-16-0875.1.
  9. Kim, J., D. E. Waliser, P. Neiman, B. Guan, J.-M. Ryoo, and G. A. Wick, 2013: Effects of atmospheric river landfalls on the cold season precipitation in California. Climate. Dyn., 40, 465-474, doi:10.1007/s00382-012-1322-3.
  10. Kim, J., and Coauthors, 2018: Winter precipitation characteristics in western US related to atmospheric river landfalls: observations and model evaluations. Climate Dyn., 50, 231-248, doi:10.1007/s00382-017-3601-5.
  11. Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 3259-3264, doi:10.1002/grl.50636.
  12. Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers, Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.
  13. Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, doi:10.1029/2012JD018027.
  14. Lavers, D. A., R. P. Allan, G. Villarini, B. Lloyd-Hughes, D. J. Brayshaw, and A. J. Wade, 2013: Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett., 8, 034010, doi:10.1088/1748-9326/8/3/034010.
  15. Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 4885-4903, doi:10.1175/JCLI-D-15-0655.1.
  16. Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 22-47, doi:10.1175/2007JHM855.1.
  17. Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in Western Washington: The connection to atmospheric rivers. J. Hydrometeorol., 12, 1337-1358, doi:10.1175/2011JHM1358.1.
  18. Paltan, H., D. E. Waliser, W. H. Lim, B. Guan, D. Yamazaki, R. Pant, and S. Dadson, 2017: Global floods and water availability driven by atmospheric rivers. Geophys. Res. Lett., 44, 10387-10395, doi:10.1002/2017GL074882.
  19. Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 1721-1745. https://doi.org/10.1175/1520-0493(2004)132<1721:sacaoo>2.0.co;2
  20. Ralph, F. M., P. J. Neiman, and G. A. Wick, S. I. Gutman, M. D. Dettinber, D. R. Cayan, and A. B. White, 2006: Flooding on California's Russian River: role of atmospheric rivers, Geophys. Res. Lett, 33, L13801, doi:10.1029/2006GL026689.
  21. Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the Western United States. Mon. Wea. Rev., 142, 905-921, doi:10.1175/MWR-D-13-00168.1.
  22. Wick, G. A., P. J. Neiman, and F. M. Ralph, 2013: Description and validation of an automated objective technique for identification and characterization of the integrated water vapor signature of atmospheric rivers. IEEE Trans. Geosci. Remote Sens., 51, 2166-2176, doi:10.1109/TGRS.2012.2211024.
  23. Yatagai, A., O. Arakawa, K. Kamiguchi, H. Kawamoto, M. I. Nodzu, and A. Hamada, 2009: A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Sci. Online Lett. Atmos., 5, 137-140, doi:10.2151/sola.2009-035.
  24. Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges, Bull. Amer. Meteor. Soc., 93, 1401-1415 doi:10.1175/BAMSD-11-00122.1.
  25. Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 1999-2002. https://doi.org/10.1029/94GL01710
  26. Zhu, Y., and R. E. Newell, 1998: A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers. Mon. Wea. Rev., 126, 725-735. https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2