• Title/Summary/Keyword: Meteorological

Search Result 5,165, Processing Time 0.026 seconds

Socio-demographic Characteristics and Leading Causes of Death Among the Casualties of Meteorological Events Compared With All-cause Deaths in Korea, 2000-2011

  • Lee, Kyung Eun;Myung, Hyung-Nam;Na, Wonwoong;Jang, Jae-Yeon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.46 no.5
    • /
    • pp.261-270
    • /
    • 2013
  • Objectives: This study investigated the socio-demographic characteristics and medical causes of death among meteorological disaster casualties and compared them with deaths from all causes. Methods: Based on the death data provided by the National Statistical Office from 2000 to 2011, the authors analyzed the gender, age, and region of 709 casualties whose external causes were recorded as natural events (X330-X389). Exact matching was applied to compare between deaths from meteorological disasters and all deaths. Results: The total number of deaths for last 12 years was 2 728 505. After exact matching, 642 casualties of meteorological disasters were matched to 6815 all-cause deaths, which were defined as general deaths. The mean age of the meteorological disaster casualties was 51.56, which was lower than that of the general deaths by 17.02 (p<0.001). As for the gender ratio, 62.34% of the meteorological event casualties were male. While 54.09% of the matched all-cause deaths occurred at a medical institution, only 7.6% of casualties from meteorological events did. As for occupation, the rate of those working in agriculture, forestry, and fishery jobs was twice as high in the casualties from meteorological disasters as that in the general deaths (p<0.001). Meteorological disaster-related injuries like drowning were more prevalent in the casualties of meteorological events (57.48%). The rate of amputation and crushing injury in deaths from meteorological disasters was three times as high as in the general deaths Conclusions: The new information gained on the particular characteristics contributing to casualties from meteorological events will be useful for developing prevention policies.

Investigating Statistical Characteristics of Aerosol-Cloud Interactions over East Asia retrieved from MODIS Satellite Data (MODIS 위성 자료를 이용한 동아시아 에어로졸-구름의 통계적 특성)

  • Jung, Woonseon;Sung, Hyun Min;Lee, Dong-In;Cha, Joo Wan;Chang, Ki-Ho;Lee, Chulkyu
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1065-1078
    • /
    • 2020
  • The statistical characteristics of aerosol-cloud interactions over East Asia were investigated using Moderate Resolution Imaging Spectroradiometer satellite data. The long-term relationship between various aerosol and cloud parameters was estimated using correlation analysis, principle component analysis, and Aerosol Indirect Effect (AIE) estimation. In correlation analysis, Aerosol Optical Depth (AOD) was positively Correlated with Cloud Condensation Nuclei (CCN) and Cloud Fraction (CF), but negatively correlated with Cloud Top Temperature (CTT) and Cloud Top Pressure (CTP). Fine Mode Fraction (FMF) and CCN were positively correlated over the ocean because of sea spray. In principle component analysis, AOD and FMF were influenced by water vapor. In particular, AOD was positively influenced by CF, and negatively by CTT and CTP over the ocean. In AIE estimation, the AIE value in each cloud layer and type was mostly negative (Twomey effect) but sometimes positive (anti-Twomey effect). This is related to regional, environmental, seasonal, and meteorological effects. Rigorous and extensive studies on aerosol-cloud interactions over East Asia should be conducted via micro- and macro-scale investigations, to determine chemical characteristics using various meteorological instruments.

Improvement and Evaluation of Emission Formulas in UM-CMAQ-Pollen Model (UM-CMAQ-Pollen 모델의 참나무 꽃가루 배출량 산정식 개선과 예측성능 평가)

  • Kim, Tae-Hee;Seo, Yun Am;Kim, Kyu Rang;Cho, Changbum;Han, Mae Ja
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • For the allergy patient who needs to know the situation about the extent of pollen risk, the National Institute of Meteorological Sciences developed a pollen forecasting system based on the Community Multiscale Air Quality Modeling (CMAQ). In the old system, pollen emission from the oak was estimated just based on the airborne concentration and meteorology factors, resulted in high uncertainty. For improving the quality of current pollen forecasting system, therefore the estimation of pollen emission is now corrected based on the observation of pollen emission at the oak forest to better reflect the real emission pattern. In this study, the performance of the previous (NIMS2014) and current (NIMS2016) model system was compared using observed oak pollen concentration. Daily pollen concentrations and emissions were simulated in pollen season 2016 and accuracy of onset and end of pollen season were evaluated. In the NIMS2014 model, pollen season was longer than actual pollen season; The simulated pollen season started 6 days earlier and finished 13.25 days later than the actual pollen season. The NIMS2016 model, however, the simulated pollen season started only 1.83 days later, and finished 0.25 days later than the actual pollen season, showing the improvement to predict the temporal range of pollen events. Also, the NIMS2016 model shows better performance for the prediction of pollen concentration, while there is a still large uncertainty to capture the maximum pollen concentration at the target site. Continuous efforts to correct these problems will be required in the future.

Estimation of Available Days for a Cloud Seeding Experiment in Korea (한반도 목적별 인공강우 실험가능일 추정)

  • Jung, Woonseon;Chang, Ki-Ho;Cha, Joo Wan;Ku, Jung Mo;Lee, Chulkyu
    • Journal of Environmental Science International
    • /
    • v.31 no.2
    • /
    • pp.117-129
    • /
    • 2022
  • In this study, we investigated the characteristics of the meteorological and environmental conditions for a cloud seeding experiment over the Korean peninsula and estimated the available days for the same. The conditions of available days appropriate for a cloud seeding experiment were classified according to four purposes: water resources, drought relief, forest fire prevention, and air quality improvement. The average number of available days for a cloud seeding experiment were 91.27 (water resources), 45.93-51.11 (drought relief), 40.28-46.00 (forest fire prevention), and 42.19-44.60 days/year (air quality improvement). If six experiments were carried out per available day for a cloud seeding experiment, the number of times cloud seeding experiments could be conducted per year in a continuously operating system were estimated as 547.62 (water resources), 275.58-306.66 (drought relief), 241.68-276.00 (forest fire prevention), and 253.14-267.60 times/year (air quality improvement). From this result, it was possible to determine the appropriate meteorological and environmental conditions and statistically estimate the available days for a cloud seeding experiment. The data on the available days for a cloud seeding experiment might be useful for preparing and performing such an experiment.

Development of a Oak Pollen Emission and Transport Modeling Framework in South Korea (한반도 참나무 꽃가루 확산예측모델 개발)

  • Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Kim, Mijin;Choi, Ho-seong;Han, Mae Ja;Oh, Inbo;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.221-233
    • /
    • 2015
  • Pollen is closely related to health issues such as allergenic rhinitis and asthma as well as intensifying atopic syndrome. Information on current and future spatio-temporal distribution of allergenic pollen is needed to address such issues. In this study, the Community Multiscale Air Quality Modeling (CMAQ) was utilized as a base modeling system to forecast pollen dispersal from oak trees. Pollen emission is one of the most important parts in the dispersal modeling system. Areal emission factor was determined from gridded areal fraction of oak trees, which was produced by the analysis of the tree type maps (1:5000) obtained from the Korea Forest Service. Daily total pollen production was estimated by a robust multiple regression model of weather conditions and pollen concentration. Hourly emission factor was determined from wind speed and friction velocity. Hourly pollen emission was then calculated by multiplying areal emission factor, daily total pollen production, and hourly emission factor. Forecast data from the KMA UM LDAPS (Korea Meteorological Administration Unified Model Local Data Assimilation and Prediction System) was utilized as input. For the verification of the model, daily observed pollen concentration from 12 sites in Korea during the pollen season of 2014. Although the model showed a tendency of over-estimation in terms of the seasonal and daily mean concentrations, overall concentration was similar to the observation. Comparison at the hourly output showed distinctive delay of the peak hours by the model at the 'Pocheon' site. It was speculated that the constant release of hourly number of pollen in the modeling framework caused the delay.

Effect of Urbanization on Rainfall Events during the 2010 Summer Intensive Observation Period over Seoul Metropolitan Area (2010년 여름철 수도권 집중관측기간 강수 사례들에서 나타나는 도시화 효과)

  • Kim, Do-Woo;Kim, Yeon-Hee;Kim, Ki-Hoon;Shin, Seung-Sook;Kim, Dong-Kyun;Hwang, Yoon-Jeong;Park, Jong-Im;Choi, Da-Young;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.219-232
    • /
    • 2012
  • The intensive observation (ProbeX-2010) was performed to investigate an urban effect on summer rainfall over the Seoul metropolitan area from 13 August to 3 September 2010. Two kinds of urban effect were detected. First, weak rainfall (${\leq}1\;mm\;hr^{-1}$) was observed more frequently in the downwind area of Seoul than any other area of the country. The high frequency of weak rainfall in the downwind area was also confirmed from the recent five years of observational data (2006-2010). Because the high frequency was more apparent in mountainous regions during nighttime, the weak rainfall seems to be caused by a combined effect of urbanization and topography. Second, sporadically, a convective system was developed rapidly in the downwind area of Seoul, causing heavy rainfall (${\geq}10\;mm\;hr^{-1}$). It can be most clearly seen in series of radar images around 1300-1500 KST 27 August 2010. We investigated in detail the synoptic and local weather and upper air conditions. As a result, not only urban-induced high sensible heat but also conditionally unstable atmosphere (especially unstable in low level) and low level moisture were pointed out as important factors that contributed to urban-induced heavy rainfall.

Detection of Water Cloud Microphysical Properties Using Multi-scattering Polarization Lidar

  • Xie, Jiaming;Huang, Xingyou;Bu, Lingbing;Zhang, Hengheng;Mustafa, Farhan;Chu, Chenxi
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.174-185
    • /
    • 2020
  • Multiscattering occurs when a laser transmits into dense atmosphere targets (e.g. fogs, smoke or clouds), which can cause depolarization effects even though the scattering particles are spherical. In addition, multiscattering effects have additional information about microphysical properties of scatterers. Thus, multiscattering can be utilized to study the microphysical properties of the liquid water cloud. In this paper, a Monte Carlo method was used to simulate multi-scattering transmission properties of Lidar signals in the cloud. The results showed the slope of the degree of linear polarization (SLDLP) can be used to invert the extinction coefficient, and then the cloud effective size (CES) and the liquid water content (LWC) may be easily obtained by using the extinction coefficient and saturation of the degree of linear polarization (SADLP). Based on calculation results, a microphysical properties inversion method for a liquid cloud was presented. An innovative multiscattering polarization Lidar (MSPL) system was constructed to measure the LWC and CES of the liquid cloud, and a new method based on the polarization splitting ratio of the Polarization Beam Splitter (PBS) was developed to calibrate the polarization channels of MSPL. By analyzing the typical observation data of MSPL observation in the northern suburbs of Nanjing, China, the LWC and CES of the liquid water cloud were obtained. Comparisons between the results from the MSPL, MODIS and the Microwave radar data showed that, the microphysical properties of liquid cloud could be retrieved by combining our MSPL and the inversion method.

Internet-based RAMINS II as a Future Communication Framework for AgroMeteorological Information in Asia (아시아 지역 농업기상정보 공유를 위한 인터넷기반 기상정보 연동시스템)

  • Byong-Lyol Lee;G. Ali Kamali;Wang Shili
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.127-132
    • /
    • 2002
  • All the countries in RA II (Asia Region in WMO) welcome the establishment of a Web site dedicated to agricultural meteorology, because it is believed that the best way to improve and speed up the flow of information is the use of the Internet and the establishment of a Web site. In providing recommendation for the promotion and improvement of the AgroMeteorological service in RA II, a couple of key suggestions were proposed: (a) Exchanges of data and AgroMeteorological knowledge between member countries and between RAs, (b) Exchanges of experts between member countries as a necessary way to share the knowledge, and (c) Joint research between member countries to solve common problems in AgroMeteorological affairs. In order to meet the above requirements for RA II, an AgroMeteorological information network will be the most critical and dynamic aspect in sustainable agriculture in this region. In addition, the establishment of a Core AgroMeteorological station, recommended by CAgM of WMO, will require its own information sharing systems for communication among member countries. Inevitable use of information technologies (IT) such as information networks, databases, simulation models, GIS, and RS for regional impact assessment of environmental change on AgroEcosystem will be enforced. Thus, the regional Internet-based Agrometeorological information network has been in place since 1999, though all contributions to it have been volunteered by individuals, institutes, universities, etc.

ENSO Response to Global Warming as Simulated by ECHO-G/S (ECHO-G/S에 나타난 기후변화에 따른 엘니뇨 변화 특성 분석)

  • Lee, Hyo-Shin;Kwon, Won-Tae;Ahn, Joong-Bae;Boo, Kyung-On;Ch, Yu-Mi
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.365-379
    • /
    • 2007
  • Global warming may shift the properties and dynamics of ENSO. We study the changes in ENSO characteristics in a coupled general circulation model, ECHO-G/S. First, we analyse the mean state changes by comparing present day simulation and various high $CO_2$ climates. The model shows a little El Nino-like changes in the sea surface temperature and wind stress in the eastern tropical Pacific. As the mean temperature rises, the ENSO amplitude and the frequency of strong El Ninos and La Nina decrease. The analysis shows that the weakening of the oceanic sensitivities is related to the weakening of ENSO. In addition to the surface changes, the remote subsurface sea temperature response in the western Pacific to the wind stress in the eastern Pacific influences the subsequent ENSO amplitude. However, ENSO amplitude does not show linear response to the greenhouse gas concentrations.

Firm's Economic Efficiency and Critical Weather Information in Distribution Industry by Climate Change (기후변화에 따른 유통산업의 핵심 기상요인과 기업의 경제적 효율성)

  • Lee, Joong-Woo;Ko, Kwang-Kun;Jeon, Jin-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.787-797
    • /
    • 2010
  • Nowadays meteorological information is systemized as a useful knowledge which has a significant effect on the overall industrial domains over the simple data. The distribution industry, which has the short life cycle, depends on the meteorological information at the strategic level. However, it is necessary to pay attention to the continuous investment in meteorological information because there is a hostility to paying for a service, particularly it does not provide accurate and reliable information. Therefore, the purpose of this study is to increase the usefulness of meteorological information in the distribution industry for its economic effectiveness from the core meteorological factors. We found significant meteorological factors (temperature, precipitation, disaster) that have a critical influence on the distribution industry through the hierarchical analysis process, and their importance according to the type of distribution channels, such as department store, large-scale discount store, convenience store, and home shopping. We performed the AHP analysis with 103 survey samples by middle managers from the various distribution channels. We found that precipitation is the critical meteorological factor across the distribution industry. Based on this result, we stress the difference in the level of the meteorological information in order for the effectiveness of each type of distribution channels.