DOI QR코드

DOI QR Code

Investigating Statistical Characteristics of Aerosol-Cloud Interactions over East Asia retrieved from MODIS Satellite Data

MODIS 위성 자료를 이용한 동아시아 에어로졸-구름의 통계적 특성

  • Jung, Woonseon (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Sung, Hyun Min (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Lee, Dong-In (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Cha, Joo Wan (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Chang, Ki-Ho (Convergence Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Lee, Chulkyu (Convergence Meteorological Research Department, National Institute of Meteorological Sciences)
  • 정운선 (국립기상과학원 융합기술연구부) ;
  • 성현민 (국립기상과학원 미래기반연구부) ;
  • 이동인 (부경대학교 환경대기과학과) ;
  • 차주완 (국립기상과학원 융합기술연구부) ;
  • 장기호 (국립기상과학원 융합기술연구부) ;
  • 이철규 (국립기상과학원 융합기술연구부)
  • Received : 2020.10.07
  • Accepted : 2020.11.16
  • Published : 2020.11.30

Abstract

The statistical characteristics of aerosol-cloud interactions over East Asia were investigated using Moderate Resolution Imaging Spectroradiometer satellite data. The long-term relationship between various aerosol and cloud parameters was estimated using correlation analysis, principle component analysis, and Aerosol Indirect Effect (AIE) estimation. In correlation analysis, Aerosol Optical Depth (AOD) was positively Correlated with Cloud Condensation Nuclei (CCN) and Cloud Fraction (CF), but negatively correlated with Cloud Top Temperature (CTT) and Cloud Top Pressure (CTP). Fine Mode Fraction (FMF) and CCN were positively correlated over the ocean because of sea spray. In principle component analysis, AOD and FMF were influenced by water vapor. In particular, AOD was positively influenced by CF, and negatively by CTT and CTP over the ocean. In AIE estimation, the AIE value in each cloud layer and type was mostly negative (Twomey effect) but sometimes positive (anti-Twomey effect). This is related to regional, environmental, seasonal, and meteorological effects. Rigorous and extensive studies on aerosol-cloud interactions over East Asia should be conducted via micro- and macro-scale investigations, to determine chemical characteristics using various meteorological instruments.

Keywords

References

  1. Alam, K. K., Iqbal, M. J., Blaschke, T., Qureshi, S., Khan, G., 2010, Monitoring spatio-temporal variations in aerosols and aerosol-cloud interactions over Pakistan using MODIS data, Adv. Space Res., 46, 1162-1176. https://doi.org/10.1016/j.asr.2010.06.025
  2. Albrecht, B. A., 1989, Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227-1230. https://doi.org/10.1126/science.245.4923.1227
  3. Aloysius, M., Monhan, M., Babu, S. S., Parameswaran, K., Moorthy, K. K., 2009, Validation of MODIS derived aerosol optical depth and an investigation on aerosol transport over the South East Arabian Sea during ARMEX-II. Ann. Geophys., 27, 2285-2296. https://doi.org/10.5194/angeo-27-2285-2009
  4. Balakrishnaiah, G., kumar, K. R., Reddy, B. S. K., Gopal, K. R., Reddy, R. R., Reddy, L. S. S., Swamulu, C., Ahammed, Y. N., Narasimhulu, K., KrishnaMoorthy, K., Babu S. S., 2012, Spatio-temporal variations in aerosol optical and cloud parameters over Southern India retrieved from MODIS satellite data, Atmos. Env., 47, 435-445. https://doi.org/10.1016/j.atmosenv.2011.10.032
  5. Chung, K. Y., Park, S. U., 1995, Characteristics synoptic features associated with the transport of Yellow sand to Korea, Asia-Pac. J. Atmos. Sci., 31, 45-63.
  6. Dipu, S., Prabha, T. V., Pandithurai, G., Dudhia, J., Pfister, G., Rajesh, K., Goswami, B. N., 2013, Impact of elevated aerosol layer on the cloud macrophysical properties prior to monsoon onset, Atmos. Env., 70, 454-467. https://doi.org/10.1016/j.atmosenv.2012.12.036
  7. Feingold, G., Eberhard, W. L., Veron, D. E., Previdi, M., 2003, First measurements of the Twomey indirect effect using ground based remote sensors, Geophys. Res. Lett., 30, 1287.
  8. Houze, R. Jr., 2014, Cloud dynamics, Academic Press 2014, 1-496.
  9. Intergovernmental Panel on Climate Change (IPCC), Pachauri, R. K. Meyer, L. A., 2015, Climate change 2014: Synthesis report, Cambridge University Press, IPCC, 1-151.
  10. Jones, T. A., Christopher, S. A., 2010, Statistical properties of aerosol-cloud-precipitation interactions in South America, Atmos. Chem. Phys., 10, 2287-2305. https://doi.org/10.5194/acp-10-2287-2010
  11. Jung, W. S., Panicker, A. S., Lee, D. I., Park, S. H., 2013, Estimates of aerosol indirect effect from Terra MODIS over Republic of Korea, Adv. Meteorol., 2013, 976813.
  12. Jung, W. S., Park, S. H., Kang, D. D., Lee, D. I., Kim, D., 2014, Characterization of chemical properties of precipitation at Busan, Korea, 2009, J. Environ. Sci. Int., 23, 275-289. https://doi.org/10.5322/JESI.2014.23.2.275
  13. Kawamoto, K., 2008, Effect of precipitation on water cloud properties over China, Geophys. Res. Lett., 35, L20811. https://doi.org/10.1029/2008GL035052
  14. Kondratyev, K. Y., Ivlev, L. S., Krapivin, V. F., Varostos, C. A., 2006, Atmospheric Aerosol Properties: Formation, Processes and Impacts, Springer-Verlag Berlin Heidelberg, Germany, 1-572.
  15. Lee, Y. G., Kim, B. J., Park, G. U., Ahn, B. Y., 2010, Characteristics of precipitation and temperature at Ulleng-do and Dok-do, Korea of recent four years (2005-2008), J. Environ. Sci. Int., 19, 1109-1118. https://doi.org/10.5322/JES.2010.19.9.1109
  16. Levin, Z., Cotton, W. R., 2008, Aerosol pollution impact on precipitation: A Scientic Review, Springer, 1-386.
  17. Myhre, G., Stordal, F., Johnsrud, M., Kaufman, Y. J., Rosenfeld, D., Storelvmo, T., Kristjansson, J. E., Berntsen, T. K., Myhre, A., Isaksen, I. S. A., 2007, Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models, Atmos. Chem. Phys., 7, 3081-3101. https://doi.org/10.5194/acp-7-3081-2007
  18. Panicker, A. S., Pandithurai, G., Dipu, S., 2010, Aerosol indirect effect during successive contrasting monsoon seasons over Indian subcontinent using MODIS data, Atmos. Env., 44, 1937-1943. https://doi.org/10.1016/j.atmosenv.2010.02.015
  19. Park, S. H., Panicker, A. S., Lee, D. I., Jung, W. S., Jang, S. M., Jang, M., Kim, D., Kim, Y. W., Jeong, H., 2010, Characterization of chemical properties of atmospheric aerosols over Anmyeon (South Korea), a super site under Global Atmosphere Watch, J. Atmos. Chem., 67, 71-86. https://doi.org/10.1007/s10874-011-9205-2
  20. Quass, J., Ming, Y., Menon, S., Takemura, T., Wang, M., Penner, J. E., Gettelman, A., Lohmann, U., Bellouin, N., Boucher, O., Sayer, A. M., Thomas, G. E., McComiskey, A., Feingold, G., Hoose, C., Kristjansson, J. E., Liu, X., Balkanski, Y., Donner, L. J., Ginoux, P. A., Stier, P., Grandey, B., Feichter, J., Sednev, I., Bauer, S. E., Koch, D., Grainger, R. G., Kirkevag, A., Iversen, T., Seland, O., Easter, R., Ghan, S. J., Rasch, P. J., Morrison, H., Lamarque, J. F., Iacono, M. J., Kinne, S., Schulz, M., 2009, Aerosol indirect effects-general circulation model intercomparison and evaluation with satellite data, Atmos. Chem. Phys., 9, 8697-8717. https://doi.org/10.5194/acp-9-8697-2009
  21. Rosenfeld, D., Dai, J. X., Yu, Z., Yao, X., Xu, X. Y., Du, C., 2007, Inverse relations between amounts of air pollution and orographic precipitation, Science, 315, 1396-1398. https://doi.org/10.1126/science.1137949
  22. Rossow, W. B., Schiffer, R. A., 1991, ISCCP cloud data products, Bull. Amer. Meteor. Soc., 72, 2-20. https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2
  23. Rossow, W. B., Schiffer, R. A., 1999, Advances in understanding clouds from ISCCP, Bull. Amer. Meteorol. Soc., 80, 2261-2288. https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2
  24. Seinfeld, J. H., Pandis, S. N., 2006, Atmospheric chemistry and physics: From air pollution to climate change, Wiley-Interscience, 1-1232.
  25. Shi, Z., Zhang, D., Hayashi, M., Ogata, H., Ji, H., Fujiie, W., 2008, Inluences of sulfate and nitrate on the hygroscopic behavior of couarse dust particles, Atmos. Env., 42, 822-827. https://doi.org/10.1016/j.atmosenv.2007.10.037
  26. Song, S. K., Han, S. B., Kim, S. W., 2014, Analysis of meteorological characteristics related to changes in atmospheric environment on Jeju island during 2010-2012, J. Environ. Sci. Int., 23, 1889-1907. https://doi.org/10.5322/JESI.2014.23.11.1889
  27. Twomey, S., 1977, The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149-1152. https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
  28. Warner, T. T., 2009, Desert meteorology, Cambridge University Press, 1-620.
  29. Warren, S. G., Hahn, C. H., London, J., 1986, Global distribution of total cloud cover and cloud type amounts over land, NCAR Technical Note, NCAR/TN-273+STR, DOI: 10.5065/D6GH9FXB.
  30. Warren, S. G., Hahn, C. H., London, J., 1988, Global distribution of total cloud cover and cloud type amounts over the ocean, NCAR Technical Note, NCAR/TN-317+STR, DOI: 10.5065/D6QC01D1.
  31. Wilks, D. S., 2006, Statistical methods in the atmospheric sciences, Elsevier academic press publication, 1-627.
  32. World Meteorological Organization (WMO), 2018, Peer review report on global precipitation enhancement activities, WWRP 2018-1, WMO, 1-129.
  33. Yuan, T., Li, Z., Zhang, R., Fan, J., 2008, Increase of cloud droplet size with aerosol optical depth: an observation and modeling study, J. Geophys. Res., 113, 1-16.
  34. Yum, S. S., Kim, B. G., Kim, S. W., Chang, L. S., Kim, S. B., 2011, A review of clouds and Aerosols, Clim. Change Res., 2, 253-267.
  35. Zhou, L., Hopke, P. K., Paatero, P., Ondov, J. M., Pancras, J. P., Pekney N. J., Davidson, C. I., 2004, Advanced factor analysis for multiple time resolution aerosol composition data, Atmos. Env., 38, 4909-4920. https://doi.org/10.1016/j.atmosenv.2004.05.040
  36. Zubko, V., Kaufman, Y. J., Burg, R. I., Martines, J. V., 2007, Principal component analysis of remote sensing of aerosols over oceans, IEEE Trans. Geosci. Remote Sens., 45, 730-745. https://doi.org/10.1109/TGRS.2006.888138