• Title/Summary/Keyword: Metal-oxide-semiconductor field-effect transistor

Search Result 181, Processing Time 0.03 seconds

A Study on Quality Degradation of Semiconductor Devices by Electron Bean Exposure (전자빔 조사에 의한 반도체 소자의 기능저하 연구)

  • Cho, Gyu-Seong;Lee, Tae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.692-696
    • /
    • 1997
  • 본 연구에서는 BJT(Bipolar Junction Transistor)와 MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 등을 1MeV에너지의 전자빔을 선량을 변화시켜가며 조사시켜 그 특성 변화를 분석하였다. BJT에 대해서는 조사 전, 후의 전류 이득의 측정을 통해 base 에서의 minority-carrie의 수명 변화에 의해서 전류 이득이 감소하는 것으로 나타났으며, MOSFET의 경우는 oxide 지역의 전하량 변화에 의해서 문턱 전압이 영향을 받음을 확인할 수 있었다. BJT의 minority-carrier의 수명 감소량은 조사 선량이 증가함에 따라 직선적으로 변화함을 알 수 있었고, MOSFET의 문턱 전압의 변화는 nMOS와 pMOS의 경우 서로 다름을 관찰할 수 있었는데 이는 oxide내에서 발생하는 전하에 의해 차이가 남을 알 수 있었다.

  • PDF

Effects of Ti and TiN Capping Layers on Cobalt-silicided MOS Device Characteristics in Embedded DRAM and Logic

  • Kim, Jong-Chae;Kim, Yeong-Cheol;Choy, Jun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.782-786
    • /
    • 2001
  • Cobalt silicide has been employed to Embedded DRAM (Dynamic Random Access Memory) and Logic (EDL) as contact material to improve its speed. We have investigated the influences of Ti and TiN capping layers on cobalt-silicided Complementary Metal-Oxide-Semiconductor (CMOS) device characteristics. TiN capping layer is shown to be superior to Ti capping layer with respect to high thermal stability and the current driving capability of pMOSFETs. Secondary Ion Mass Spectrometry (SIMS) showed that the Ti capping layer could not prevent the out-diffusion of boron dopants. The resulting operating current of MOS devices with Ti capping layer was degraded by more than 10%, compared with those with TiN.

  • PDF

Characteristics of a Titanium-oxide Layer Prepared by Plasma Electrolytic Oxidation for Hydrogen-ion Sensing

  • Lee, Do Kyung;Hwang, Deok Rok;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.76-80
    • /
    • 2019
  • The characteristics of a titanium oxide layer prepared using a plasma electrolytic oxidation (PEO) process were investigated, using an extended gate ion sensitive field effect transistor (EG-ISFET) to confirm the layer's capability to react with hydrogen ions. The surface morphology and element distribution of the PEO-processed titanium oxide were observed and analyzed using field-emission scanning-electron microscopy (FE-SEM) and energy-distribution spectroscopy (EDS). The titanium oxide prepared by the PEO process was utilized as a hydrogen-ion sensing membrane and an extended gate insulator. A commercially available n-channel enhancement MOS-FET (metal-oxide-semiconductor FET) played a role as a transducer. The responses of the PEO-processed titanium oxide to different pH solutions were analyzed. The output drain current was linearly related to the pH solutions in the range of pH 4 to pH 12. It was confirmed that the titanium-oxide layer prepared by the PEO process could feasibly be used as a hydrogen-ion-sensing membrane for EGFET measurements.

Si CMOS Extension and Ge Technology Perspectives Forecast Through Metal-oxide-semiconductor Junctionless Field-effect Transistor

  • Kim, Youngmin;Lee, Junsoo;Cho, Seongjae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.847-853
    • /
    • 2016
  • Applications of Si have been increasingly exploited and extended to More-Moore, More-than-Moore, and beyond-CMOS approaches. Ge is regarded as one of the supplements for Si owing to its higher carrier mobilities and peculiar band structure, facilitating both advanced and optical applications. As an emerging metal-oxide device, the junctionless field-effect transistor (JLFET) has drawn considerable attention because of its simple process, less performance fluctuation, and stronger immunity against short-channel effects due to the absence of anisotype junctions. In this study, we investigated lateral field scalability, which is equivalent to channel-length scaling, in Si and Ge JLFETs. Through this, we can determine the usability of Si CMOS and hypothesize its replacement by Ge. For simulations with high accuracy, we performed rigorous modeling for ${\mu}_n$ and ${\mu}_p$ of Ge, which has seldom been reported. Although Ge has much higher ${\mu}_n$ and ${\mu}_p$ than Si, its saturation velocity ($v_{sat}$) is a more determining factor for maximum $I_{on}$. Thus, there is still room for pushing More-Moore technology because Si and Ge have a slight difference in $v_{sat}$. We compared both p- and n-type JLFETs in terms of $I_{on}$, $I_{off}$, $I_{on}/I_{off}$, and swing with the same channel doping and channel length/thickness. $I_{on}/I_{off}$ is inherently low for Ge but is invariant with $V_{DS}$. It is estimated that More-Moore approach can be further driven if Si is mounted on a JLFET until Ge has a strong possibility to replace Si for both p- and n-type devices for ultra-low-power applications.

A Study on Implanted and Annealed Antimony Profiles in Amorphous and Single Crystalline Silicon Using 10~50 keV Energy Bombardment (비정질 및 단결정 실리콘에서 10~50 keV 에너지로 주입된 안티몬 이온의 분포와 열적인 거동에 따른 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.683-689
    • /
    • 2015
  • For the formation of $N^+$ doping, the antimony ions are mainly used for the fabrication of a BJT (bipolar junction transistor), CMOS (complementary metal oxide semiconductor), FET (field effect transistor) and BiCMOS (bipolar and complementary metal oxide semiconductor) process integration. Antimony is a heavy element and has relatively a low diffusion coefficient in silicon. Therefore, antimony is preferred as a candidate of ultra shallow junction for n type doping instead of arsenic implantation. Three-dimensional (3D) profiles of antimony are also compared one another from different tilt angles and incident energies under same dimensional conditions. The diffusion effect of antimony showed ORD (oxygen retarded diffusion) after thermal oxidation process. The interfacial effect of a $SiO_2/Si$ is influenced antimony diffusion and showed segregation effects during the oxidation process. The surface sputtering effect of antimony must be considered due to its heavy mass in the case of low energy and high dose conditions. The range of antimony implanted in amorphous and crystalline silicon are compared each other and its data and profiles also showed and explained after thermal annealing under inert $N_2$ gas and dry oxidation.

A Study on Parameters for Design of IGBT (IGBT 설계 Parameter 연구)

  • Lho, Young-Hwan;Lee, Sang-Yong;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1943-1950
    • /
    • 2009
  • The development of high voltage Insulated Gate Bipolar Transistor (IGBT) have given new device advantage in the areas where they compete with conventional GTO (Gate Turnoff Thyristor) technology. The IGBT combines the advantages of a power MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) and a bipolar power transistor. The change of electrical characteristics for IGBT is mainly coming from the change of characteristics of MOSFET at the input gate and the PNP transistors at the output. The gate oxide structure gives the main influence on the changes in the electrical characteristics affected by environments such as radiation and temperature, etc.. The change of threshold voltage, which is one of the important design parameters, is brought by charge trapping at the gate oxide. In this paper, the electrical characteristics are simulated by SPICE simulation, and the parameters are found to design optimized circuits.

  • PDF

A Wide Dynamic Range CMOS Image Sensor Based on a Pseudo 3-Transistor Active Pixel Sensor Using Feedback Structure

  • Bae, Myunghan;Jo, Sung-Hyun;Lee, Minho;Kim, Ju-Yeong;Choi, Jinhyeon;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.413-419
    • /
    • 2012
  • A dynamic range extension technique is proposed based on a 3-transistor active pixel sensor (APS) with gate/body-tied p-channel metal oxide semiconductor field effect transistor (PMOSFET)-type photodetector using a feedback structure. The new APS consists of a pseudo 3-transistor APS and an additional gate/body-tied PMOSFET-type photodetector, and to extend the dynamic range, an NMOSFET switch is proposed. An additional detector and an NMOSFET switch are integrated into the APS to provide negative feedback. The proposed APS and pseudo 3-transistor APS were designed and fabricated using a $0.35-{\mu}m$ 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) process. Afterwards, their optical responses were measured and characterized. Although the proposed pixel size increased in comparison with the pseudo 3-transistor APS, the proposed pixel had a significantly extended dynamic range of 98 dB compared to a pseudo 3-transistor APS, which had a dynamic range of 28 dB. We present a proposed pixel that can be switched between two operating modes depending on the transfer gate voltage. The proposed pixel can be switched between two operating modes depending on the transfer gate voltage: normal mode and WDR mode. We also present an imaging system using the proposed APS.

Output Characteristics of Carbon-nanotube Field-effect Transistor Dependent on Nanotube Diameter and Oxide Thickness (나노튜브 직경과 산화막 두께에 따른 탄소나노튜브 전계 효과 트랜지스터의 출력 특성)

  • Park, Jong-Myeon;Hong, Shin-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.87-91
    • /
    • 2013
  • Carbon-nanotube field-effect transistors (CNFETs) have drawn wide attention as one of the potential substitutes for metal-oxide-semiconductor field-effect transistors (MOSFETs) in the sub-10-nm era. Output characteristics of coaxially gated CNFETs were simulated using FETToy simulator to reveal the dependence of drain current on the nanotube diameter and gate oxide thickness. Nanotube diameter and gate oxide thickness employed in the simulation were 1.5, 3, and 6 nm. Simulation results show that drain current becomes large as the diameter of nanotube increases or insulator thickness decreases, and nanotube diameter affects the drain current more than the insulator thickness. An equation relating drain saturation current with nanotube diameter and insulator thickness is also proposed.

High-Performance Silicon-on-Insulator Based Dual-Gate Ion-Sensitive Field Effect Transistor with Flexible Polyimide Substrate-based Extended Gate (유연한 폴리이미드 기판 위에 구현된 확장형 게이트를 갖는 Silicon-on-Insulator 기반 고성능 이중게이트 이온 감지 전계 효과 트랜지스터)

  • Lim, Cheol-Min;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.698-703
    • /
    • 2015
  • In this study, we fabricated the dual gate (DG) ion-sensitive field-effect-transistor (ISFET) with flexible polyimide (PI) extended gate (EG). The DG ISFETs significantly enhanced the sensitivity of pH in electrolytes from 60 mV/pH to 1152.17 mV/pH and effectively improved the drift and hysteresis phenomenon. This is attributed to the capacitive coupling effect between top gate and bottom gate insulators of the channel in silicon-on-transistor (SOI) metal-oxide-semiconductor (MOS) FETs. Accordingly, it is expected that the PI-EG based DG-ISFETs is promising technology for high-performance flexible biosensor applications.

Detection of Streptavidin-Biotin Complexes Using a Highly Sensitive AlGaN/GaN-Based Extended-Gate MISHEMT-Type Biosensor

  • Lee, Hee Ho;Bae, Myunghan;Choi, Byoung-Soo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.320-325
    • /
    • 2016
  • In this paper, we propose an AlGaN/GaN-based extended-gate metal-insulator-semiconductor high electron mobility transistor (MISHEMT)-type biosensor for detecting streptavidin-biotin complexes. We measure the drain current of the fabricated sensor, which varies depending on the antibody-antigen reaction of streptavidin with biotin molecules. To confirm the immobilization of biotin polyethylene glycol (PEG) thiol, we analyze the Au surface of a GaN sample using X-ray photoelectron spectroscopy (XPS). The proposed biosensor shows higher sensitivity than Si-based extended-gate metal oxide semiconductor field effect transistor (MOSFET)-type biosensor. In addition, the proposed AlGaN/GaN-based extended-gate MISHEMT-type biosensor exhibits better long-term stability, compared to the conventional AlGaN/GaN-based MISHEMT-type biosensor.