• Title/Summary/Keyword: Metal stabilization

Search Result 211, Processing Time 0.03 seconds

A Result of Field Demonstration Experiment on the Remediation of Farm Land Soil contaminated by Heavy Metals (중금속 오염 농경지 토양의 복원을 위한 현장실증시험 결과)

  • Yu, Chan;Yun, Sung-Wook;Park, Jin-Chul;Lee, Jung-Hoon;Choi, Seung-Jin;Yoon, Seung-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.265-277
    • /
    • 2009
  • A long-term field demonstration experiment of selected stabilization method to reduce the heavy metal mobility in farmland soil contaminated by heavy metals around abandoned mine site was conducted. Field demonstration experiments were established on the contaminated farmland with the wooden plate(thickness=1cm) which dimension were width=200cm, Length=200cm, height=80cm and filled with treated soil, which was mixed with lime stone and steel refining slag except on control plot. Soil samples were collected and analyzed during the experiment period(2008. 2~2008. 8) after the installation of the plots. Field demonstration experiments results showed that the application ratio of lime stone 5% was effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF

Leaching Behavior of Arsenic and Heavy-Metals and Treatment Effects of Steel Refining Slag in a Reducing Environment of Paddy Soil (논토양의 환원환경에서 비소 및 중금속의 용출특성과 제강슬래그의 처리효과)

  • Yun, Sung-wook;Yu, Chan;Yoon, Yong-Cheol;Kang, Dong-Hyeon;Lee, Si-Young;Son, Jinkwan;Kim, Dong-Hyeon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.29-38
    • /
    • 2016
  • There have been only a few studies focused on the stabilization of metal (loid)s in anaerobic soils such as paddy soils. In this study, laboratory-scale column tests were conducted to artificially manipulate anoxic conditions in submerged paddy fields and we observed the release behavior of As, Cd, Pb, and Zn, as well as to examine the stabilization effect of steel refining slag (SRS) on the metal(loid)s. The leachate samples were collected and chemical parameters were monitored during the test period. Results suggest that anoxic conditions were developed during submersion, and that As or heavy metals (particularly Cd) fractions bound to ferrous (Fe) /manganese (Mn) oxides were easily dissociated. Moreover, As is also reduced by itself to a trivalent form with higher mobility in the reducing environment of rice paddy soil. However, it was also shown that SRS significantly decreased the dissolution of Zn, Pb, Cd, and As in the the leachates; their removal rates in the SRS-treated soil were 66 %, 45 %, 24 %, and 84 %, respectively, of those in the control soil.

Application of Red Mud and Oyster Shell for the Stabilization of Heavy Metals (Pb, Zn and Cu) in Marine Contaminated Sediment (적니와 굴패각을 이용한 해양오염퇴적물 내 중금속(Pb, Zn and Cu) 안정화 처리)

  • Shin, Woo-Seok;Kang, Ku;Park, Seong-Jik;Um, Byung-Hwan;Kim, Young-Kee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.751-756
    • /
    • 2012
  • In this study, a heavy-metal stabilization treatment using stabilizing agents derived from waste resources was utilized on Incheon North Port range sediment contaminated with Pb, Zn, and Cu. Both calcined red mud (5%, 10%, and 15% w/w) and oyster shell (5%, 10%, and 15% w/w) were applied for a wet-curing duration of 15 days. From the sequential extraction results, the oxide and organic fraction of heavy metals (Pb, Zn, and Cu) were observed strongly in the contaminated sediment. However, the fraction of heavy metal in the stabilized sediment was higher than the organic and residual fraction, in comparison to the contaminated sediment. Moreover, the leaching of heavy metals was reduced in the stabilized sediment, compared with the contaminated sediment. From these results, red mud and oyster shell were shown to be potential stabilizers of heavy metals in contaminated sediment.

A Study on the Stabilization/ Solidification Process Using Blast Furnace Slag (슬래그를 이용한 중금속 이온의 고정화)

  • 강성근;방완근;이승헌;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.725-733
    • /
    • 1999
  • It is a fundamental experiment to use blast-furnace slag in solidification/stabilization process. The compressive strength and leaching test of Pb and Cr doped samples were evaluated and the effects of heavy-metal ions on the hydration of slag was investigated. Sodium silicates(5wt%) was added as alkali-activator and the effects of replacing a part of slag with flyash or gypsum was also discussed. Pb ion was solidified by encapsulation of matrix. In of slag${\pm}$gypsum binder microstructure was densified by accelerating to form AFt/AFm phase and compressive strength was improved resulting in reducing leaching amount of Pb ion. Cr ion was solidified by substituting with Al ion in aluminate product. Slag+fly ash binder improved compressive strength and decreased leaching amount of Cr ion.

  • PDF

Solidification of Heavy Metal Ions using Magnesia-Phosphate (인산염 마그네시아에 의한 중금속 이온 고정화)

  • Song, Myong-Shin;Kang, Hyun-Ju;Choi, Hun;Kim, Ju-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.317-318
    • /
    • 2010
  • At the latest industry develops, heavy metals or sludge contaminated surrounding farm land and rivers. In this study, wished to solve problem by saying contaminated sludge and tailing and heavy metals to do solidification using Magnesia phosphate cement. Confirmed through above experiment that magnesia is effect in solidification and stabilization of chromium and lead.

  • PDF

Solidification/Stabilization of Heavy Metals in Sewage Sludge Prior to Use as a Landfill Cover Material (매립지 복토재로의 활용을 위한 하수슬러지 내 중금속의 고형화/안정화)

  • Park, Youn-Jin;Shin, Won-Sik;Choi, Sang-June;Lee, Hoon-Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.665-675
    • /
    • 2010
  • The effects of chemical binders (ladle slag, ordinary portland cement (OPC), hydroxyapatite and calcium hydroxide) on the solidification/stabilization of heavy metals (Cd, Cu, Ni, Pb, Zn) in sewage sludge were evaluated by chemical leaching tests such as EDTA extraction, TCLP and sequential extraction. The results of EDTA extraction showed that heavy metal concentrations in sewage sludge were highly reduced after solidification/stabilization with slag, cement or calcium hydroxide. However, EDTA interrupted solidification/stabilization of heavy metals by hydroxyapatite. The TCLP-extracted heavy metal concentrations in sewage sludge after solidification/stabilization with chemical amendments were highly reduced. However, Cu concentration in the sewage sludge solidified/stabilized with slag, cement or calcium hydroxide increased because the pH of TCLP solution was higher than 7. Mixtures of sludge 1 : slag 0.2 : calcium hydroxide 0.1 (wt ratio) showed the least leachability in batch TCLP and EDTA extraction. The results of sequential extraction (SM&T, formaly BCR) indicated that the distribution of heavy metals changed from exchangable and carbonate fractions to strongly bound organic fraction. It was found that maximum leachate concentrations of Ba, Cd, Cr and Pb from sewage sludge amended with slag and calcium hydroxide were far below US EPA TCLP regulations.

Assessment of Soil Stabilization forthe Reduction of Environmental Risk of Lead-contaminated Soil Near a Smelter Site (제련소 주변 납 오염 현장토양의 위해성 저감을 위한 토양 안정화 평가)

  • Yeo, In-Hong;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.215-224
    • /
    • 2021
  • In this study, to investigate the effect of stabilization of Pb-contaminated soil near a smelter site for the reduction of environmental risk of Pb leaching, commercial stabilizers were amended with the Pb-contaminated soil and evaluated leaching characteristics of Pb in soil by TCLP and SPLP leaching test. Also, performing sequential extraction procedure speciation of Pb in the amended soil was investigated. Limestone, AC-2 (Amron), Metafix (Peroxychem) that possess stabilization performance towards heavy metal in soil and mass production is available were selected as candidates. AC-2 contained a CaCO3 and MgO crystalline phase, while Metafix had a Fe7S8 crystalline phase, according to XRD studies. Pb content in SPLP extract was lower than the South Korean drinking water standard for Pb in groundwater at 4% AC-2 and Metafix treatment soil, and TCLP-based stabilization effectiveness was more than 90%. The findings of the sequential extraction method of soil treated with Metafix revealed that fractions 1 and 2 of Pb, which correspond to relatively high mobility and bioavailable fractions, were lowered, while the residual fraction (fraction 5) was raised. As a consequence, the order of performance for Pb stabilization in polluted soil was Metafix>AC-2>limestone.

Effects of Amendments on Heavy Metal Uptake by Leafy, Root, Fruit Vegetables in Alkali Upland Soil (염기성 밭 토양에서 안정화제에 의한 엽채류, 근채류, 과채류 작물들의 중금속 전이 특성)

  • Kim, Min-Suk;Min, Hyun-Gi;Lee, Sang-Hwan;Kim, Jeong-Gyu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Various types of amendments have been studied for heavy metal stabilization in soil. However, researches on the effect of amendments on alkali soil and their effects on the plants at various edible parts are insufficient. The aim of this study was to evaluate the stabilization efficiency of heavy metals and their transfer into edible parts of food crops. Abandoned mine area was selected and 3 types of amendments (lime stone, LS; steel slag, SS; acid mine drainage sludge, AMDS) was applied with 3% (w/w). in field. After 6 month aging, Chinese cabbage (leafy), bok choy (leafy), garlic (root) and red pepper (fruit) were transplanted and cultivated. For chemical assessment, total concentration and bioavailability using Mehlich-3 solution were determined. For biological assessment, fresh weight and heavy metal uptakes were analyzed. It was revealed that AMDS reduced bioavailability most effectively, resulting in the decrease in heavy metal concentration in edible parts of all crops. When explaining the heavy metal uptake of plants, the bioavailability was more appropriate than the total contents of soil heavy metals. Therefore, bioavailability-based further research and management practices should be carried out continuously for the sustainable environment management, safe crop production, and human health risk reduction.

Modified LEACH Protocol improving the Stabilization of Topology in Metal Obstacle Environment (금속 장애물 환경에서 토폴로지 안정성을 개선한 변형 LEACH 프로토콜)

  • Yi, Ki-One;Lee, Jae-Kee;Kwark, Gwang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1349-1358
    • /
    • 2009
  • Because of the limitation of supporting power, the current WSN(Wireless Sensor Network) Technologies whose one of the core attributes is low power consumption are the best solution for shipping container networking in stack environment such as on vessel. So it is effective to use the Wireless Sensor Network Technology. In this case, many nodes join in the network through a sink node because there are difficulties to get big money and efforts to set up a lot of sink node. It needs clustering-based proactive protocol to manage many nodes. But it shows low reliability because they have effect on radio frequency in metal obstacle environments(interference, distortion, reflection, and etc) like the intelligent container. In this paper, we proposed an improved Modified LEACH Protocol for stableness radio frequency environment. In the proposed protocol, we tried to join the network and derived stable topology composition after the measuring of link quality. Finally, we verified that the proposed protocol is composing more stable topology than previously protocol in metal obstacle environment.

A Comparison on the Effect of Soil Improvement Methods for the Remediation of Heavy Metal Contaminated Farm Land Soil (중금속 오염 농경지 토양의 복원을 위한 토량개량법의 효과 비교)

  • Yun, Sung-Wook;Jin, Hae-Geun;Kang, Sin-Il;Choi, Seung-Jin;Lim, Young-Cheol;Yu, Chan
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.59-70
    • /
    • 2010
  • A long-term field demonstration experiment on selected stabilization methods to reduce the heavy metal mobility in farmland soil contaminated by heavy metals was conducted. The field demonstration experiment was established on the contaminated farmland with wooden plates (thickness = 1 cm), of which the dimension were width = 200 cm, Length = 200 cm, height = 80 cm, filled with treated soil, which was mixed with lime stone and steel refining slag except on control plot. Soil samples in the plots were collected and analyzed during the experiment period (6 months) after the installation of the plots. The field demonstration experiment results showed that the application lime stone at the ratio of 5% was effective for immobilizing heavy metal components in contaminated farmland soil.