DOI QR코드

DOI QR Code

Application of Red Mud and Oyster Shell for the Stabilization of Heavy Metals (Pb, Zn and Cu) in Marine Contaminated Sediment

적니와 굴패각을 이용한 해양오염퇴적물 내 중금속(Pb, Zn and Cu) 안정화 처리

  • Shin, Woo-Seok (Institute of Marine Science and Technology Research, Hankyung National University) ;
  • Kang, Ku (Institute of Marine Science and Technology Research, Hankyung National University) ;
  • Park, Seong-Jik (Department of Chemical Engineering, Hankyung National University) ;
  • Um, Byung-Hwan (Department of Bioresources & Rural Systems Engineering, Hankyung National University) ;
  • Kim, Young-Kee (Department of Bioresources & Rural Systems Engineering, Hankyung National University)
  • 신우석 (한경대학교 해양과학기술연구센터) ;
  • 강구 (한경대학교 해양과학기술연구센터) ;
  • 박성직 (한경대학교 지역자원시스템) ;
  • 엄병환 (한경대학교 화학공학과) ;
  • 김영기 (한경대학교 화학공학과)
  • Received : 2012.05.02
  • Accepted : 2012.11.22
  • Published : 2012.11.30

Abstract

In this study, a heavy-metal stabilization treatment using stabilizing agents derived from waste resources was utilized on Incheon North Port range sediment contaminated with Pb, Zn, and Cu. Both calcined red mud (5%, 10%, and 15% w/w) and oyster shell (5%, 10%, and 15% w/w) were applied for a wet-curing duration of 15 days. From the sequential extraction results, the oxide and organic fraction of heavy metals (Pb, Zn, and Cu) were observed strongly in the contaminated sediment. However, the fraction of heavy metal in the stabilized sediment was higher than the organic and residual fraction, in comparison to the contaminated sediment. Moreover, the leaching of heavy metals was reduced in the stabilized sediment, compared with the contaminated sediment. From these results, red mud and oyster shell were shown to be potential stabilizers of heavy metals in contaminated sediment.

본 연구에서는 인천북항 인근 Pb, Zn 및 Cu로 오염된 해양퇴적물에 대하여 산업부산물인 적니와 굴패각을 안정화제로 선정하여 안정화 처리를 수해하였다. 안정화제는 적니와 굴패각으로 오염토 함량대비 각각 5%, 10%, 15%를 사용하여 15일간 습윤양생 하였다. 연속추출 실험결과를 통해 미처리오염퇴적물에서 큰 비중을 차지하고 있었던 산화물 형태와 유기물 형태 중금속이 안정화제에 의해 유기물 형태 및 잔류물 형태로 안정화되고 있음을 알 수 있었다. 또한, 안정화효율 평가를 위해 TCLP를 수행한 결과, 대조군과 비교해서 안정화 처리 퇴적물인 경우 중금속의 용출량이 확연하게 감소한 것을 확인할 수 있었다. 이러한 결과로부터, 산업부산물을 이용한 안정화제가 오염퇴적물처리에 활용 가능함을 나타내고 있다.

Keywords

Acknowledgement

Supported by : 한국해양과학기술진흥원

References

  1. Gray, C. W., Dunhan, S. J., Dennis, P. G., Zhao, F. J. and McGrath, S. P., "Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red mud," Environ. Pollut., 142, 530-539(2006). https://doi.org/10.1016/j.envpol.2005.10.017
  2. 국토해양부, "해양오염퇴적물 정화․복원사업 추진을 위한 실무 지침서," (2010).
  3. Conner, J. R., "Chemical Fixation and Solidification of Hazard Wastes," Van Nostrand Reinhold, New York, 1990.
  4. 이근영, 문덕현, 김경웅, 정경훈, 김태성, 김지형, 문경란, 최수빈, "폐자원을 이용한 사격장 토양내 중금속(Pb, Cu) 안정화 처리," 대한환경공학회지, 33(2), 71-76(2011).
  5. Ahmaruzzaman, M., "Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals," Adv. Colloid Interface Sci., 166, 36-59(2011).
  6. Liu, Y., Naidu, R. and Ming, H., "Red mud as an amendment for pollutants in solid and liquid phases," Geoderma, 163, 1-12(2011). https://doi.org/10.1016/j.geoderma.2011.04.002
  7. 김은호, 김정권, 성낙창, "굴껍질을 이용한 도금폐수의 중금속 제거 및 pH 상승효과에 관한 연구," 한국자원공학회지, 34(4), 414-419(1997).
  8. Brunori, C., Cremisini, C., Massanisso, P., Pinto, V. and Torricelli, L., "Reuse of a treated red mud bauxite waste: studies on environmental compatibility," J. Hazard. Mater., 117, 55-63(2005). https://doi.org/10.1016/j.jhazmat.2004.09.010
  9. 조현서, 조천래, 장영남, "Nano-S가 해양수질 및 저질에 미치는 영향에 관한 연구: 1. 실내수조실험 결과," 한국해양환경공학회지, 8(3), 158-163(2005).
  10. 박길옥, 전상호, "석회처리에 의한 오염퇴적물 내 중금속의 형태 변화 및 용출 가능성," 한국육수학회지, 41(2), 166-173(2008).
  11. Köster, M., Dahlke, S. and Meyer-Reil, L. A., "Microbial colonization and activity in relation to organic carbon in sediments of hypertrophic coastal waters (Nordrügensche Bodden, Southern Baltic Sea)," Aquat. Microb. Ecology, 39, 69-83(2005). https://doi.org/10.3354/ame039069
  12. Tessier, A., Campbell, P. G. C. and Bisson, M., "Sequential Extraction procedure for the speciation of particulate trace metals," Anal. Chem., 51, 844-851(1979). https://doi.org/10.1021/ac50043a017
  13. USEPA, "Method 1311: Toxicity Characteristic Leaching Procedure," (1992).
  14. Goudie, A., Geomophological techniques, Allen and Unwin, London, 1981.
  15. 김정대, "토양세척공정에서 광미오염토양 입자크기에 따른 중금속 추출 특성," 공업화학, 19, 98-104(2008).
  16. 港湾空港技術研究所, 港湾域における堆積物中の有害化学物質管理, 2010.
  17. Liu, Y., Naidu, R. and Ming, H., "Red mud as an amendment for pollutants in solid and liquid phases," Geoderma, 163, 1-12(2011). https://doi.org/10.1016/j.geoderma.2011.04.002
  18. 김명진, 장미정, "부산 신항만 준설퇴적물로부터 중금속의 연속추출에 관한 연구," 대한환경공학회지, 33(2), 93-102 (2011).
  19. 문덕현, 정경훈, 김태성, 김지형, 최수빈, 옥용식, 문옥란, "소성가공 굴껍질을 이용한 군부대 사격장내 고농도 납 오염 토양의 안정화," 대한환경공학회지, 32(2), 185-192(2010).
  20. Singer, A. and Berkgaut, V., "Cation exchange properties of hydrothermally treated coal fly ash," Environ. Sci. Technol., 29, 1748-1753(1995). https://doi.org/10.1021/es00007a009
  21. Garcia, D., "Modeling of Pb(II) absorption by activated carbon," MS thesis, Dept of Civ. and Environ. Eng., West virgina Univ., Morgontown, (1995).
  22. 김태희, "중금속 오염 토양의 화학적 복원기법에 대한 효율성 평가 및 안정화 메커니즘 규명," 강원대학교 대학원 농화학과 석사학위 논문, p. 66(2010).
  23. Jing, C. Meng, X. and Korfiatis, G. P., "Lead leachability in stabilized/solidified soil samples evaluated with different leaching tests," J. Hazard. Mater., B114, 101-110 (2004).
  24. Levy, D. B., Barbarich, K. A., Siemer, E. G. and Sommers, L. E., "Distribution and partitioning of trace metals in contaminated soils near leadville, Colorado," J. Environ. Qual., 21, 185-195(1992).
  25. Alloway, B. J., "Heavy metals in soils, Chapman and Hall," 1995.
  26. Benefield, L. D. and Morgan, J. M., "Chemical Precipitation," Water Quality and Treatment, Pontius, F. W. (Ed.). McGraw-Hill Inc., New York, pp. 641-708(1990).
  27. Ciccu, R., Ghiani, M., Serci, A., Fadda, S., Pertti, R. and Zucca, A., "Heavy metal immobilization in the mining-contaminated soils using various industrial wastes," Miner. Eng., 16, 187-192(2003). https://doi.org/10.1016/S0892-6875(03)00003-7
  28. Kumpiene, J., Lagerkvist, A. and Maurice, C., "Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review," Waste Manage., 28, 215-225(2008). https://doi.org/10.1016/j.wasman.2006.12.012
  29. Spuller, C., Weigand, H. and Marb, C., "Trace metal stabilisation in a shooting range soil: Mobility and phytotoxicity," J. Hazard. Mater., 141, 378-387(2007). https://doi.org/10.1016/j.jhazmat.2006.05.082
  30. Bruell, R., Nikolaidis, N. P. and Long, R. P., "Evaluation of remedial alternatives of lead from shooting range soil," Environ. Eng. Sci., 16, 403-414(1999). https://doi.org/10.1089/ees.1999.16.403

Cited by

  1. Influence of Acid and Heat Treatment on the Removal of Fluoride by Red Mud vol.37, pp.4, 2015, https://doi.org/10.4491/KSEE.2015.37.4.210
  2. Assesment of Zeolite, Montmorillonite, and Steel Slag for Interrupting Heavy Metals Release from Contaminated Marine Sediments for Capping Thickness of Reactive materials vol.39, pp.4, 2015, https://doi.org/10.5394/KINPR.2015.39.4.335
  3. Application of Limestone, Zeolite, and Crushed Concrete as Capping Material for Interrupting Heavy Metal Release from Marine Sediments and Reducing Sediment Oxygen Demand vol.57, pp.4, 2015, https://doi.org/10.5389/KSAE.2015.57.4.031
  4. Application of Lime Stone, Sand, and Zeolite as Reactive Capping Materials for Marine Sediments Contaminated with Organic Matters and Nutrients vol.39, pp.8, 2017, https://doi.org/10.4491/KSEE.2017.39.8.470