Solidification/Stabilization of Heavy Metals in Sewage Sludge Prior to Use as a Landfill Cover Material

매립지 복토재로의 활용을 위한 하수슬러지 내 중금속의 고형화/안정화

  • Park, Youn-Jin (Department of Environmental Engineering, Kyungpook National University) ;
  • Shin, Won-Sik (Department of Environmental Engineering, Kyungpook National University) ;
  • Choi, Sang-June (Department of Environmental Engineering, Kyungpook National University) ;
  • Lee, Hoon-Ha (Energy & Environment Research Division, Research Institute of Industrial Science and Technology)
  • Received : 2009.09.11
  • Accepted : 2010.07.02
  • Published : 2010.07.31

Abstract

The effects of chemical binders (ladle slag, ordinary portland cement (OPC), hydroxyapatite and calcium hydroxide) on the solidification/stabilization of heavy metals (Cd, Cu, Ni, Pb, Zn) in sewage sludge were evaluated by chemical leaching tests such as EDTA extraction, TCLP and sequential extraction. The results of EDTA extraction showed that heavy metal concentrations in sewage sludge were highly reduced after solidification/stabilization with slag, cement or calcium hydroxide. However, EDTA interrupted solidification/stabilization of heavy metals by hydroxyapatite. The TCLP-extracted heavy metal concentrations in sewage sludge after solidification/stabilization with chemical amendments were highly reduced. However, Cu concentration in the sewage sludge solidified/stabilized with slag, cement or calcium hydroxide increased because the pH of TCLP solution was higher than 7. Mixtures of sludge 1 : slag 0.2 : calcium hydroxide 0.1 (wt ratio) showed the least leachability in batch TCLP and EDTA extraction. The results of sequential extraction (SM&T, formaly BCR) indicated that the distribution of heavy metals changed from exchangable and carbonate fractions to strongly bound organic fraction. It was found that maximum leachate concentrations of Ba, Cd, Cr and Pb from sewage sludge amended with slag and calcium hydroxide were far below US EPA TCLP regulations.

본 연구에서는 하수슬러지를 매립지 복토재로 재활용하기 위해 래들슬래그, 시멘트, 인회석, 소석회를 첨가하여 하수 슬러지 내 중금속(Cd, Cu, Ni, Pb, Zn)의 용출을 평가하였다. 하수슬러지의 용출 평가는 EDTA (ethylenediaminetetraacetic acid) 추출법과 TCLP (Toxicity Characteristic Leaching Procedure)를 통해 이루어졌으며, 중금속 결합 기작은 연속추출(sequential extraction)을 통해 평가하였다. EDTA 용출 결과 하수슬러지에 래들슬래그/시멘트/소석회의 투입량이 증가할수록 하수슬러지 내 중금속의 용출이 감소하였다. 그러나 인회석을 투입했을 때는 중금속 용출의 감소 효과가 거의 나타나지 않았으며, 이는 EDTA가 인회석에 의한 중금속 고정화를 방해하였기 때문이다. TCLP 용출 결과 하수슬러지 내 슬래그, 시멘트 또는 소석회의 투입량이 증가하여 용출액의 pH가 7 이상일 때는 Cu의 용출 농도가 원하수슬러지의 용출농도보다 증가하는 것으로 나타났다. 그러나 인회석은 투입량이 증가할수록 중금속의 용출 농도가 감소하는 것으로 나타났다. 혼합 고화제를 투입한 하수슬러지의 중금속 용출 결과, 하수슬러지의 중량비 100%를 기준으로 래들슬래그 20%와 소석회 10%를 투입한 혼합물이 최적의 고화 혼합 비율이며, 이 때 EDTA 추출법과 TCLP로 용출한 중금속의 농도가 가장 낮게 나타났다. 이러한 결과는 하수슬러지 내 중금속 결합이 약한 결합인 exchangeable fraction과 carbonate fraction에서 강한 결합인 organic fraction으로 이동하였음을 연속추출(SM&T, formaly BCR)을 통해 확인할 수 있었다. 하수슬러지와 고화제를 최적의 비율로 혼합한 혼합물을 폐기물공정시험법으로 중금속 용출을 평가한 결과 Cu가 기준농도 이상으로 검출되었다. 그러나 TCLP에 따른 하수슬러지의 용출시험 결과 Ba, Cd, Cr, Pb의 항목에서 미국 환경보호청의 용출 기준을 만족하였다.

Keywords

References

  1. 환경부, 서울시 하수슬러지 처리방향(2006).
  2. 해양수산부, 해양오염방지법(2006).
  3. 환경관리공단, 하수슬러지의 효율적 처리방안(2004).
  4. Spence, R. D. and Shi, C., Stabilization and Solidification of Hazardous, Radioactive and Mixed Waste. CRC Press, New York(2005).
  5. 환경부, 토양오염공정시험방법(2002).
  6. 환경부, 폐기물공정시험방법(2005).
  7. Lacal, J., Pilar de Silva, M., Garsía, R., Teresa Sevilla, M., Procopio, J. R. and Hernández, L., "Study of fractionation and potential mobility of metal in sludge from pyrite mining and affected river sediments: changes in mobility over time and use of artificial ageing as a tool in environmental impact assessment," Environ. Pollut., 124(2), 291-305(2003). https://doi.org/10.1016/S0269-7491(02)00461-X
  8. Quevauviller, P., Lachica, M., Barahona, E., Rauret, G., Ure, A., Gomez, A. and Muntau, H., EUR Report 17127 EN, European Commission(1997).
  9. United States Environmental Protection Agency, U.S. EPA Method 1311, Toxicity characteristic leaching procedure, Test Methods for Evaluation of Solid Wastes, Physical / Chemical Methods, SW846, URL: http://www.epa.gov/epaoswer/hazwaste/test/pdfs/1311.pdf(2003).
  10. Mester, Z., Cremisini, C., Ghiara, E. and Morabito, R., "Comparison of two sequential procedures for metal fractionation in sediment samples," Anal. Chem. Acta, 359(1-2), 133-142(1998). https://doi.org/10.1016/S0003-2670(97)00687-9
  11. Zemberyova, M., Bartekova, J., Zavadska, M. and i olakova, M., "Determination of bioavailable fractions of Zn, Cu, Ni, Pb and Cd in soils and sludges by atomic absorption spectrometry," Talanta, 71(4), 1661-1668(2007). https://doi.org/10.1016/j.talanta.2006.07.055
  12. Rha, C. Y., Kang, S. K. and Kim, C. E., "Investigation of the stability of hardened slag paste for the stabilization/solidification of wastes containing heavy metal ions," J. Hazard. Mater., 73(3), 255-267(2000). https://doi.org/10.1016/S0304-3894(99)00185-5
  13. Kim, E-H, Cho, J-K. and Yim, S., "Digested sewage sludge solidification by converter slag for landfill cover," Chemosphere, 59(3), 387-395(2005). https://doi.org/10.1016/j.chemosphere.2004.10.038
  14. Lim, T. T., Chu, J., Goi, N. H., "Effect of cement on redistribution of trace metals and dissolution of organics in sewage sludge and its inorganic waste-amended products," Waste Manage., 26(11), 1294-1304(2006). https://doi.org/10.1016/j.wasman.2005.11.001
  15. Minocha, A. K., Jain, N. and Verma, C. L., "Effect of inorganic materials on the solidification of heavy metal sludge," Cement Concrete. Res., 33(10), 1695-1701(2003). https://doi.org/10.1016/S0008-8846(03)00146-7
  16. Palomo, A. and Palacios, M., "Alkali-activated cementitious materials: Alternative matrices for the immobilization of hazardous wastes Part II. Stabilization of chronium and lead," Cement Concrete. Res., 33(2), 289-295(2003). https://doi.org/10.1016/S0008-8846(02)00964-X
  17. Thevenin, G., Pera, J., "Interactions between lead and different binders," Cement Concrete. Res., 29(10), 1605-1610 (1999). https://doi.org/10.1016/S0008-8846(99)00144-1
  18. Ma, Q. Y., Traina, S. J. and Logan, T. J., "In situ lead immobillization by apatite," Environ. Sci. Technol., 27(9), 1803-1810(1993). https://doi.org/10.1021/es00046a007
  19. Tonsuaadu, K., Viipsi, K. and Trikkel, A., "EDTA impact on $Cd^{2+}$ migration in apatite-water system," J. Hazard. Mater., 154(1-3), 491-497(2007).
  20. Dermatas, D. and Meng, X., "Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils," Eng. Geol., 70(3-4), 377-394(2003). https://doi.org/10.1016/S0013-7952(03)00105-4