• 제목/요약/키워드: Metal oxide sensor

검색결과 241건 처리시간 0.02초

Fabrication and Ammonia Gas Sensing Properties of Chemiresistor Sensor Based on Porous Tungsten Oxide Wire-like Nanostructure

  • Vuong, Nguyen Minh;Kim, Do-Jin;Hieu, Hoang Nhat
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.25.2-25.2
    • /
    • 2011
  • The tungsten oxide wire-like nanostructure is fabricated by deposition and thermal oxidation of tungsten metal on porous single wall carbon nanotubes (SWNTs). The morphology and crystalline quality of materials are investigated by SEM, TEM, XRD and Raman analysis. The results prove that $WO_3$ wire-like nanostructure fabricated on SWNTs show highly porous structures. Exposure of the sensors to NH3 gas in the temperature range of 150~300$^{\circ}C$ resulted in the highest sensitivity at $250^{\circ}C$ with quite rapid response and recovery time. Response time as a function of test concentrations and NH3 gas sensing mechanism is reported and discussed.

  • PDF

Sensing Characterization of Metal Oxide Semiconductor-Based Sensor Arrays for Gas Mixtures in Air

  • Jung-Sik Kim
    • 한국재료학회지
    • /
    • 제33권5호
    • /
    • pp.195-204
    • /
    • 2023
  • Micro-electronic gas sensor devices were developed for the detection of carbon monoxide (CO), nitrogen oxides (NOx), ammonia (NH3), and formaldehyde (HCHO), as well as binary mixed-gas systems. Four gas sensing materials for different target gases, Pd-SnO2 for CO, In2O3 for NOx, Ru-WO3 for NH3, and SnO2-ZnO for HCHO, were synthesized using a sol-gel method, and sensor devices were then fabricated using a micro sensor platform. The gas sensing behavior and sensor response to the gas mixture were examined for six mixed gas systems using the experimental data in MEMS gas sensor arrays in sole gases and their mixtures. The gas sensing behavior with the mixed gas system suggests that specific adsorption and selective activation of the adsorption sites might occur in gas mixtures, and allow selectivity for the adsorption of a particular gas. The careful pattern recognition of sensing data obtained by the sensor array made it possible to distinguish a gas species from a gas mixture and to measure its concentration.

산화물 반도체식 가스센서의 입출력 고차 캘리브레이션 방정식 도출 (Induction of the High Order Calibration Equation of Metal Oxide Semiconductor Gas Sensors)

  • 박규태;김강민;이형기;윤명섭
    • 한국가스학회지
    • /
    • 제24권2호
    • /
    • pp.44-49
    • /
    • 2020
  • 본 논문에서는 산화주석 기반 반도체식 가스센서의 제조사양을 분석하여 측정회로를 설계하였다. 또한, 실제 가스안전관리 산업현장에서 가스센서를 사용하기 위하여 응답특성시험을 통한 최적 입출력 방정식을 도출하였다. 산화물 반도체 가스센서의 응답특성은 6종의 농도를 가진 표준가스를 제조하여 주입하며 출력전압을 측정을 통해 분석되었다. 각각 농도가 다른 가스의 주입에 대한 센서의 출력 전압의 관계를 룩업 테이블로 생성하였다. 생성된 룩업테이블의 데이터가 등간격이면 근사함수법으로 다항식을 도출할 수 있다. 그래서 5차의 다항식을 정의하고, 그 계수를 최소자승법으로 구하여 센서의 입출력 특성을 대표하는 5차 다항식을 완성하였다. 제안된 5차 다항식이 가스검지기 등에 실제로 적용되기 위해서는 다항식의 역변환이나 사이 값이 추가된 배열형태로 프로그래밍이 다시 생성되어져야 한다. 본 연구에서는 사이 값을 1/5로 세밀하게 구분 및 보간을 계산하여 배열형태로 구현되었다. 제안한 5차 캘리브레이션 교정식의성능은 표준가스를 주입 및 그 농도를 측정했을 때 일차방정식보다 오차가 감소됨을 확인되었다.

유동형 미세 열유속 센서의 설계 (Design of The Micro Fluidic Heat Flux Sensor)

  • 김정균;조성천;이선규
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.138-145
    • /
    • 2009
  • A suspended membrane micro fluidic heat flux sensor that is able to measure the heat flow rate was designed and fabricated by a complementary-metal-oxide-semiconductor-compatible process. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, low pass filter, and lock-in amp has enabled the resolution of 50 nW power and provides the sensitivity of $11.4\;mV/{\mu}W$. The heater modulation method was used to eliminate low frequency noises from sensor output. It is measured with various heat flux fluid of DI-water to test as micro fluidic application. In order to estimate the heat generation of samples from the output measurement of a micro fluidic heat-flux sensor, a methodology for modeling and simulating electro-thermal behavior in the micro fluidic heat-flux sensor with integrated electronic circuit is presented and validated. The electro-thermal model was constructed by using system dynamics, particularly the bond graph. The electro-thermal system model in which the thermal and the electrical domain are coupled expresses the heat generation of samples converts thermal input to electrical output. The proposed electro-thermal system model shows good agreement with measured output voltage response in transient state and steady-state.

Block-Based Low-Power CMOS Image Sensor with a Simple Pixel Structure

  • Kim, Ju-Yeong;Kim, Jeongyeob;Bae, Myunghan;Jo, Sung-Hyun;Lee, Minho;Choi, Byoung-Soo;Choi, Pyung;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제23권2호
    • /
    • pp.87-93
    • /
    • 2014
  • In this paper, we propose a block-based low-power complementary metal oxide semiconductor (CMOS) image sensor (CIS) with a simple pixel structure for power efficiency. This method, which uses an additional computation circuit, makes it possible to reduce the power consumption of the pixel array. In addition, the computation circuit for a block-based CIS is very flexible for various types of pixel structures. The proposed CIS was designed and fabricated using a standard CMOS 0.18 ${\mu}m$ process, and the performance of the fabricated chip was evaluated. From a resultant image, the proposed block-based CIS can calculate a differing contrast in the block and control the operating voltage of the unit blocks. Finally, we confirmed that the power consumption in the proposed CIS with a simple pixel structure can be reduced.

Assistive Circuit for Lowering Minimum Operating Voltage and Balancing Read/Write Margins in an SRAM Array

  • Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권2호
    • /
    • pp.184-188
    • /
    • 2014
  • There is a trade-off between read stability and writability under a full-/half-select condition in static random access memory (SRAM). Another trade-off in the minimum operating voltage between the read and write operation also exists. A new peripheral circuit for SRAM arrays, called a variation sensor, is demonstrated here to balance the read/write margins (i.e., to optimize the read/write trade-off) as well as to lower the minimum operation voltage for both read and write operations. A test chip is fabricated using an industrial 45-nm bulk complementary metal oxide semiconductor (CMOS) process to demonstrate the operation of the variation sensor. With the variation sensor, the word-line voltage is optimized to minimize the trade-off between read stability and writability ($V_{WL,OPT}=1.055V$) as well as to lower the minimum operating voltage for the read and write operations simultaneously ($V_{MIN,READ}=0.58V$, $V_{MIN,WRITE}=0.82V$ for supply voltage $(V_{DD})=1.1V$).

ANN Modeling of a Gas Sensor

  • Baha, H.;Dibi, Z.
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.493-496
    • /
    • 2010
  • At present, Metal Oxide gas Sensors (MOXs) are widely used in gas detection because of its advantages, including high sensitivity and low cost. However, MOX presents well-known problems, including lack of selectivity and environment effect, which has motivated studies on different measurement strategies and signal-processing algorithms. In this paper, we present an artificial neural network (ANN) that models an MOX sensor (TGS822) used in a dynamic environment. This model takes into account dependence in relative humidity and in gas nature. Using MATLAB interface in the design phase and optimization, the proposed model is implemented as a component in an electronic simulator library and accurately expressed the nonlinear character of the response and that its dependence on temperature and relative humidity were higher than gas nature.

다공질규소를 이용한 MOPS 구조의 에탄올 감지 특성 (The sensing characteristics of MOPS structure based on porous silicon for ethanol gas)

  • 손신영;김한중;이기원;김영유
    • 센서학회지
    • /
    • 제15권6호
    • /
    • pp.457-461
    • /
    • 2006
  • To use the porous silicon as gas sensors, we made the MOPS structure from the porous silicon with Al evaporation and investigated the sensing characteristic of ethanol. When the MOPS structure is in contact with ethanol gas, the maximum peak of PL changes and it return to original intensity without contact. The MOPS structure had response time 0.78s and recovery time 4.13s when it is in contact with ethanol, which satisfied the required sensor standards. Further complimentary researches, however, are required to investigate the contact mechanism between MOPS structure and ethanol and to solve the surface contamination problem.

Synthesis and Characterization of Zinc Oxide Nanorods for Nitrogen Dioxide Gas Detection

  • Park, Jong-Hyun;Kim, Hyojin
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.260-266
    • /
    • 2021
  • Synthesizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate highly efficient gas sensors by means of possible enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned zinc oxide (ZnO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the ZnO nanorods array of the single hexagonal wurtzite crystalline phase. From gas sensing measurements for the nitrogen dioxide (NO2) gas, the vertically aligned ZnO nanorod array is observed to have a highly responsive sensitivity to NO2 gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO2 at 250 ℃ and a low NO2 detection limit of 5 ppm in dry air. These results along with a facile fabrication process demonstrate that the ZnO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO2 gas sensors.

Vertically aligned cupric oxide nanorods for nitrogen monoxide gas detection

  • Jong-Hyun Park;Hyojin Kim
    • 한국표면공학회지
    • /
    • 제56권4호
    • /
    • pp.219-226
    • /
    • 2023
  • Utilizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate relevant gas sensors by means of potential enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned cupric oxide (CuO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a CuO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Cu metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the CuO nanorods array of the single monoclinic tenorite crystalline phase. From gas sensing measurements for the nitrogen monoxide (NO) gas, the vertically aligned CuO nanorod array is observed to have a highly responsive sensitivity to NO gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO at 200 ℃ and a low NO detection limit of 2 ppm in dry air. These results along with a facile fabrication process demonstrate that the CuO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO gas sensors.