• 제목/요약/키워드: Metal oxide material

검색결과 682건 처리시간 0.038초

Mg2NiHx-CaO 수소 저장 복합물질의 물질 전과정 평가 (Material Life Cycle Assessments on Mg2NiHx-CaO Composites)

  • 황준현;신효원;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.8-18
    • /
    • 2022
  • With rapid industrialization and population growth, fossil fuel use has increased, which has a significant impact on the environment. Hydrogen does not cause contamination in the energy production process, so it seems to be a solution, but it is essential to find an appropriate storage method due to its low efficiency. In this study, Mg-based alloys capable of ensuring safety and high volume and hydrogen storage density per weight was studied, and Mg2NiHx synthesized with Ni capable of improving hydrogenation kinetics. In addition, in order to improve thermal stability, a hydrogen storage composite material synthesized with CaO was synthesized to analyze the change in hydrogenation reaction. In order to analyze the changes in the metallurgical properties of the materials through the process, XRD, SEM, BET, etc. were conducted, and hydrogenation behavior was confirmed by TGA and hydrogenation kinetics analysis. In addition, in order to evaluate the impact of the process on the environment, the environmental impact was evaluated through "Material Life Cycle Assessments" based on CML 2001 and EI99' methodologies, and compared and analyzed with previous studies. As a result, the synthesis of CaO caused additional power consumption, which had a significant impact on global warming, and further research is required to improve this.

고상법으로 합성된 리튬이온 이차전지용 음극물질로서 전이금속 피로인산화물의 전기화학적 특성 (Electrochemical Characteristics of Transition Metal Pyrophosphate as Negative Electrode Materials through Solid-state Reaction)

  • 홍민영;안상조;류지헌
    • 전기화학회지
    • /
    • 제23권4호
    • /
    • pp.105-112
    • /
    • 2020
  • 리튬이온 이차전지용 음극 활물질 중 전환반응을 거치는 전이금속 산화물은 높은 용량을 지니고 있으나, 아직 해결되어야 하는 여러 문제점을 지니고 있다. 본 연구에서는 새로운 음극 활물질로써 망간 피로인산화물(Mn2P2O7) 및 니켈 피로인산화물(Ni2P2O7)과 이를 포함하는 탄소 복합물질을 고상법으로 간단하게 합성하였다. 망간 피로인산화물 및 니켈 피로인산화물의 초기 가역용량은 각각 333 및 340 mAh g-1의 용량을 나타내었으며, 탄소와 복합재료를 구성하면 각각 433 및 387 mAh g-1로 가역용량이 증가하였을 뿐만 아니라 초기효율도 약 10% 정도 향상되었다. 망간 피로인산화물과 탄소와의 복합재료로 구성된 활물질이 가장 높은 초기용량과 효율을 지니며, 사이클 성능도 가장 우수하였다. 다중 음이온을 포함하는 망간 피로인산화물은 망간 산화물인 MnO와 비교하였을 때, 음이온의 질량이 크기 때문에 무게당 용량은 낮았지만, 전압곡선이 기울기를 지니는 형태를 나타내면서 충전(lithiation)전압은 0.51에서 0.57 V (vs. Li/Li+)로 높아지고, 방전(delithiation)전압은 1.15에서 1.01 V (vs. Li/Li+)로 낮아졌다. 따라서, 충전과 방전에서의 전압차이가 0.64 에서 0.44 V로 크게 감소하므로 전지의 전압효율이 개선되며, 방전과정에서 음극전위가 낮아지게 되어 완전지의 작동전압을 높일 수 있다.

눈의 물리적인 특성과 유사한 펄 원료 개발 및 이를 이용한 화장료 조성물 제조방법 (Development of Pearl Pigment which Has the Similar Properties of Snow in Make-up Products)

  • 이윤하;김경남;선우건;;;최영진;고승용;한상훈;강학희;이옥섭
    • 대한화장품학회지
    • /
    • 제34권3호
    • /
    • pp.167-173
    • /
    • 2008
  • 화장품 분야에서 펄 안료는 다양하게 적용되어져 왔다. 지금까지 가장 대중적으로 사용된 펄 안료는 마이카 기재에 산화철이 코팅된 것이었지만, 최종 제품에 이와 같은 펄을 사용하게 될 경우 천연 마이카에 함유된 불순물로 인해 약간의 불투명한 노란 색상이 띄게 된다[1,2]. 본 연구는 눈과 같은 반짝임을 제공하는 펄 안료 개발에 초점을 맞췄고, 눈과 같은 효과는 펄 안료의 구조와 순도 등의 영향 때문인 것을 알게 되었다. 특히, 이번 펄 안료 개발은 유리 기재와 산화철을 코팅시켜 눈의 광학적인 값(refractive index)과 입자 크기(particle size)를 눈과 유사하게 개발하였고 이는 눈과 같이 화려한 반짝임(glittering) 효과를 구현할 수 있게 되었다. 그리고 메이크업 제품에 본 펄 안료를 적용하여 화려한 제품을 개발하게 되었다.

BT (BaTiO3)-TiO2-ZrO2계 유전체 세라믹스를 이용한 유전체 공진기 및 필터 특성 (Characteristics of Dielectric Fabricated with BT (BaTiO3)-TiO2-ZrO2 Systems and the Dielectric Resonator Filter)

  • 전용민;지영남;김성균;이재복;유시홍;이성의;문제도
    • 한국전기전자재료학회논문지
    • /
    • 제37권6호
    • /
    • pp.619-629
    • /
    • 2024
  • Dielectric resonators with BT (BaTiO3), TiO2, and ZrO2 powders without using the rare earth oxide powders were fabricated for the target relative permittivity of between 30 and 40 and the filter characteristics of metal cavity filter with the dielectric resonators inside were evaluated. Powder characteristics such as particle size distributions and specific surface areas were measured for the composing raw powders to evaluate the powder states. After measuring and comparing the relative permittivity and dielectric losses of the dielectrics of three different compositions, the specific composition was determined (BT:TiO2:ZrO2=1:4:1 in mole) and the dielectric resonators were fabricated with that composition, which shows relative permittivity of around 35. The powder characteristics of mixed powders with the determined composition were also evaluated to investigate any agglomerates possibly formed in the process of powder mixing. Dielectric resonators were fabricated by the powder compaction (compaction pressure: 31 MPa) and firing method. The peak firing temperature was 1,300℃ and the holding time at the peak temperature was 3 hours. After firing, cylindrical resonators with one end closed were mechanically machined to eliminate any size differences in dielectric resonator which can be caused by the shrinkage difference during each firing process of resonator fabrication. After measuring the resonator characteristic in the frequency range from 3.6 GHz to 3.8 GHz by changing the height of dielectric resonator, the height of the resonator was determined to be 11.7 mm. Finally, filter characteristics of TM (Transverse Magnetic) mode metal cavity filters with the dielectric inside were measured and evaluated. The metal cavity filters with the dielectric resonators showed the insertion losses of below 1 dB with the band widths of 200 MHz and over 20 dB return losses from 3.6 GHz to 3.8 GHz, whose filter characteristics well satisfied the requirements of the band pass filters for the base stations and it was proved that the dielectrics using the proposed composition could be used as dielectric resonator.

고체산화물 연료전지용 Strontium Titanate 세라믹 접속자 소재의 소결 거동 및 전기적 특성 (Sintering Behavior and Electrical Properties of Strontium Titanate-Based Ceramic Interconnect Materials for Solid Oxide Fuel Cells)

  • 박범경;이종원;이승복;임탁형;박석주;송락현;신동열
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.80.1-80.1
    • /
    • 2010
  • A strontium titanate ($SrTiO_3$)-based material with a perovskite structure is considered to be one of the promising alternatives to $LaCrO_3$-based materials since $SrTiO_3$ perovskite shows a high chemical stability under both oxidizing and reducing atmospheres at high temperatures. $SrTiO_3$ materials exhibit an n-type semiconducting behavior when it is donor-doped and/or exposed to a reducing atmosphere. In this work, $Sr_{1-x}La_xTi_{1-y}M_yO_3$ materials doped with $La^{3+}$ in A-sites and aliovalent transition metal ions ($M^{n+}$) in B-sites were synthesized by the modified Pechini method. The X-ray diffraction analysis indicated that the materials synthesized by the Pechini process exhibited a single curbic perovskite-type structure without any impurity phases, and are tolerant, to some extent, to cation doping. The sintering behaviors of $Sr_{1-x}La_xTi_{1-y}M_yO_3$ in $H_2/N_2$ and air were characterized by dilatometry and microstructural observations. The electrical conduction mechanism and the dopant effect are discussed based on the defect structures and the electrical conductivities measured at various oxygen partial pressures and temperatures.

  • PDF

Effects of Sr Contents on Structural Change and Electrical Conductivity in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$)

  • 류지승;노태민;김진성;정철원;이희수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • Strontium doped lanthanum manganite (LSM) with perovskite structure for SOFC cathode material shows high electrical conductivity and good chemical stability, whereas the electrical conductivity at intermediate temperature below $800^{\circ}C$ is not sufficient due to low oxygen ion conductivity. The approach to improve electrical conductivity is to make more oxygen vacancies by substituting alkaline earths (such as Ca, Sr and Ba) for La and/or a transition metal (such as Fe, Co and Cu) for Mn. Among various cathode materials, $LaSrMnCuO_3$ has recently been suggested as the potential cathode materials for solid oxide fuel cells (SOFCs). As for the Cu doping at the B-site, it has been reported that the valence change of Mn ions is occurred by substituting Cu ions and it leads to formation of oxygen vacancies. The electrical conductivity is also affected by doping element at the A-site and the co-doping effect between A-site and B-site should be described. In this study, the $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$ ($0{\leq}x{\leq}0.4$) systems were synthesized by a combined EDTA-citrate complexing process. The crystal structure, morphology, thermal expansion and electrical conductivity with different Sr contents were studied and their co-doping effects were also investigated.

  • PDF

La이 도핑된 CuO-ZnO-Al2O3 복합 산화물의 합성공정개발 (Development and Synthesis of La Doped CuO-ZnO-Al2O3 Mixed Oxide)

  • 정미원;임샛별;문보람;홍태환
    • 한국재료학회지
    • /
    • 제21권1호
    • /
    • pp.67-71
    • /
    • 2011
  • La doped CuO-ZnO-$Al_2O_3$ powders are prepared by sol-gel method with aluminum isopropoxide and primary distilled water as precursor and solvent. In this synthesized process, the obtained metal oxides caused the precursor such as copper (II) nitrate hydrate and zinc (II) nitrate hexahydrate were added. To improve the surface areas of La doped CuO-ZnO-$Al_2O_3$ powder, sorbitan (z)-mono-9-octadecenoate (Span 80) was added. The synthesized powder was calcined at various temperatures. The dopant was found to affect the surface area and particle size of the mixed oxide, in conjunction with the calcined temperature. The structural analysis and textual properties of the synthesized powder were measured with an X-ray Diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller surface analysis (BET), Thermogravimetry-Differential Thermal analysis (TG/DTA), $^{27}Al$ solid state Nuclear Magnetic Resonance (NMR) and transform infrared microspectroscopy (FT-IR). An increase of surface area with Span 80 was observed on La doped CuO-ZnO-$Al_2O_3$ powders from $25m^2$/g to $41m^2$/g.

Inverted CdSe/ZnS Quantum Dots Light-Emitting Diode Using Low-Work Function Organic Material Polythylenimine Ethoylated

  • Kim, HongHee;Son, DongIck;Jin, ChangKyu;Hwang, DoKyung;Yoo, Tae-Hee;Park, CheolMin;Choi, Won Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.246.1-246.1
    • /
    • 2014
  • Over the past several years, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED). In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[1] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QDLEDs, blend of poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo) and poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] are used as hole transporting layer (HTL) to improve hole transporting property. At the operating voltage of 8 V, the QDLED device emitted spectrally orange color lights with high luminance up to 2450 cd/m2, and showed current efficacy of 0.6 cd/A, respectively.

  • PDF

Effects of Al-doping on IZO Thin Film for Transparent TFT

  • Bang, J.H.;Jung, J.H.;Song, P.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.207-207
    • /
    • 2011
  • Amorphous transparent oxide semiconductors (a-TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). Recently, Nomura et al. demonstrated high performance amorphous IGZO (In-Ga-Zn-O) TFTs.1 Despite the amorphous structure, due to the conduction band minimum (CBM) that made of spherically extended s-orbitals of the constituent metals, an a-IGZO TFT shows high mobility.2,3 But IGZO films contain high cost rare metals. Therefore, we need to investigate the alternatives. Because Aluminum has a high bond enthalpy with oxygen atom and Alumina has a high lattice energy, we try to replace Gallium with Aluminum that is high reserve low cost material. In this study, we focused on the electrical properties of IZO:Al thin films as a channel layer of TFTs. IZO:Al were deposited on unheated non-alkali glass substrates (5 cm ${\times}$ 5 cm) by magnetron co-sputtering system with two cathodes equipped with IZO target and Al target, respectively. The sintered ceramic IZO disc (3 inch ${\phi}$, 5 mm t) and metal Al target (3 inch ${\phi}$, 5 mm t) are used for deposition. The O2 gas was used as the reactive gas to control carrier concentration and mobility. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of IZO:Al thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

양극산화 공정시간에 따른 알루미늄 5052 합금의 산화피막 성장 및 내식성 관찰 (Observation of Corrosion Behavior with Aluminum 5052 Alloy by Modulating Anodization Time)

  • Ji, HyeJeong;Choi, Dongjin;Jeong, Chanyoung
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.67-67
    • /
    • 2018
  • The 5xxx series aluminum alloys are recently used in not only marine system but also automotive area because of a low density material, good mechanical properties and better resistance to corrosion. However, Aluminum alloys are less resistant than the purest aluminum such as 1xxx aluminum alloy. Electrochemical anodization technique has attracted in the area of surface treatment because of a simple procedure, a low-cost efficiency than other techniques such as lithography and a large volume of productivity, and so on. Here, The relationship between the corrosion behavior and the thickness of aluminum anodic oxide have been studied. Prior to anodization, The 5052 aluminum sheets ($30{\times}20{\times}1mm$) were degreased by ultra-sonication in acetone and ethanol for 10 minutes and eletropolished in a mixture of perchloric acid and ethanol (1:4, volume ratio) under an applied potential of 20V for 60 seconds to obtain a regular surface. During anodization process, Aluminum alloy was used as a working electrode and a platinum was used as a counter electrode. The two electrodes were separated at a distance of 5cm. The applied voltage of anodization is conducted at 40V in a 0.3M oxalic acid solution at $0^{\circ}C$ with appropriate magnetic stirring. The surface morphology and the thickness of AAO films was observed with a Scanning Electron Microscopy (SEM). The corrosion behavior of all samples was evaluated by an open-circuit potential and potentio-dynamic polarization test in 3.5wt% NaCl solution. Thus, The corrosion resistance of 5052 aluminum alloy is improved by the formation of an anodized oxide film as function of increase anodization time which artificially develops on the metal surface. The detailed electrochemical behavior of aluminum 5052 alloy will be discussed in view of the surface structures modified by anodization conditions such as applied voltages, concentration of electrolyte, and temperature of electrolyte.

  • PDF