DOI QR코드

DOI QR Code

Electrochemical Characteristics of Transition Metal Pyrophosphate as Negative Electrode Materials through Solid-state Reaction

고상법으로 합성된 리튬이온 이차전지용 음극물질로서 전이금속 피로인산화물의 전기화학적 특성

  • Hong, Min Young (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • An, Sang-Jo (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
  • 홍민영 (한국산업기술대학교 지식기반기술.에너지대학원) ;
  • 안상조 (한국산업기술대학교 지식기반기술.에너지대학원) ;
  • 류지헌 (한국산업기술대학교 지식기반기술.에너지대학원)
  • Received : 2020.08.18
  • Accepted : 2020.10.05
  • Published : 2020.11.30

Abstract

Transition metal oxide, which undergoes a conversion reaction in the negative electrode material for a lithium-ion batteries, has a high specific capacity, but still has several critical problems. In this study, manganese pyrophosphate (Mn2P2O7), nickel pyrophosphate (Ni2P2O7), and carbon composite materials with pyrophosphates as novel negative electrode materials instead of transition metal oxide, are synthesized through simple solid-state reaction. The initial reversible capacity of Mn2P2O7 and Ni2P2O7 are 333 and 340 mAh g-1, and when the composite materials are composed with carbon, the reversible capacity increases to 433 and 387 mAh g-1, respectively. The initial Coulombic efficiency is also improved by about 10%. The Mn2P2O7 and carbon composite material has the highest initial capacity and efficiency, and has the best cycle performance. Mn2P2O7 containing polyanion, has a lower specific capacity due to the large mass of polyanion compared to MnO (manganese oxide). However, since Mn2P2O7 shows a voltage curve with a slope, the charging (lithiation) voltage increases from 0.51 to 0.57 V (vs. Li/Li+), and the discharge (delithiation) voltage decreases from 1.15 to 1.01 V (vs. Li/Li+). Therefore, the voltage efficiency of the cell is improved because the voltage difference between charging and discharging is greatly reduced from 0.64 to 0.44 V, and the operating voltage of the full cell increases because the negative electrode potential is lowered during the discharging process.

리튬이온 이차전지용 음극 활물질 중 전환반응을 거치는 전이금속 산화물은 높은 용량을 지니고 있으나, 아직 해결되어야 하는 여러 문제점을 지니고 있다. 본 연구에서는 새로운 음극 활물질로써 망간 피로인산화물(Mn2P2O7) 및 니켈 피로인산화물(Ni2P2O7)과 이를 포함하는 탄소 복합물질을 고상법으로 간단하게 합성하였다. 망간 피로인산화물 및 니켈 피로인산화물의 초기 가역용량은 각각 333 및 340 mAh g-1의 용량을 나타내었으며, 탄소와 복합재료를 구성하면 각각 433 및 387 mAh g-1로 가역용량이 증가하였을 뿐만 아니라 초기효율도 약 10% 정도 향상되었다. 망간 피로인산화물과 탄소와의 복합재료로 구성된 활물질이 가장 높은 초기용량과 효율을 지니며, 사이클 성능도 가장 우수하였다. 다중 음이온을 포함하는 망간 피로인산화물은 망간 산화물인 MnO와 비교하였을 때, 음이온의 질량이 크기 때문에 무게당 용량은 낮았지만, 전압곡선이 기울기를 지니는 형태를 나타내면서 충전(lithiation)전압은 0.51에서 0.57 V (vs. Li/Li+)로 높아지고, 방전(delithiation)전압은 1.15에서 1.01 V (vs. Li/Li+)로 낮아졌다. 따라서, 충전과 방전에서의 전압차이가 0.64 에서 0.44 V로 크게 감소하므로 전지의 전압효율이 개선되며, 방전과정에서 음극전위가 낮아지게 되어 완전지의 작동전압을 높일 수 있다.

Keywords

References

  1. J.B. Goodenough and Y. Kim, 'Challenges for Rechargeable Li Batteries', Chem. Mater., 22, 587 (2009). https://doi.org/10.1021/cm901452z
  2. T.-H. Kim, J.-S. Park, S.K. Chang, S. Choi, J.H. Ryu, and H.-K. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase', Adv. Energy Mater., 2, 860 (2012). https://doi.org/10.1002/aenm.201200028
  3. Z.-L. Xu, X. Liu, Y. Luo, L. Zhou, and J.-K. Kim, 'Nanosilicon anodes for high performance rechargeable batteries', Prog. Mater. Sci., 90, 1 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.003
  4. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, 'Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries', Nature, 407, 496 (2000). https://doi.org/10.1038/35035045
  5. Y. Lu, L. Yu, and X. W. Lou, 'Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries', Chem., 4, 972 (2018). https://doi.org/10.1016/j.chempr.2018.01.003
  6. A. Kraytsberg and Y. Ein-Eli, 'A critical review-promises and barriers of conversion electrodes for Li-ion batteries', J. Solid State Electrochem., 21, 1907 (2017). https://doi.org/10.1007/s10008-017-3580-9
  7. Y. Oumellal, A. Rougier, G. A. Nazri, J-M. Tarascon, and L. Aymard, 'Metal hydrides for lithium-ion batteries', Nat. Mater., 7, 916 (2008). https://doi.org/10.1038/nmat2288
  8. A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, and W.v. Schalkwijk, 'Nanostructured materials for advanced energy conversion and storage devices', Nat. Mater., 4, 366 (2005). https://doi.org/10.1038/nmat1368
  9. M.J. Aragón, B. Leon, C.P. Vicente, and J.L.Tirado, 'A new form of manganese carbonate for the negative electrode of lithium-ion batteries', J. Power Sources, 196, 2863 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.032
  10. S. Wang, X. Jiang, G. Du, Z. Guo, J. Jang, and S.-J. Kim, 'Solvothermal synthesis of Mn2P2O7 and its application in lithium-ion battery', Mater. Lett., 65, 3265 (2011). https://doi.org/10.1016/j.matlet.2011.07.027
  11. H. Pang, Z. Yan, W. Wang, Y. Wei, X. Li, J. Li, J. Chen, J. Zhang, and H. Zheng, 'Template-free Controlled Fabrication of NH4MnPO4·H2O and Mn2P2O7 MicroNanostructures and Study of Their Electrochemical Properties', Int. J. Electrochem. Sci., 7, 12340 (2012).
  12. M.M. Ren, Z. Zhou, and X.P. Gao, 'LiVOPO4 as an anode material for lithium ion batteries', J. Appl. Electrochem., 40, 209 (2010). https://doi.org/10.1007/s10800-009-9958-3
  13. T.-G. Kim, J.-G. Lee, D. Son, S. Jin, M.G. Kim, and B. Park, 'Reaction mechanisms of tridymite iron phosphate with lithium ions in the low-voltage range', Electrochim. Acta, 53, 1843 (2007). https://doi.org/10.1016/j.electacta.2007.08.037
  14. N. Kalaiselvi, C.-H. Doh, C.-W. Park, S.-I. Moon, and M.-S. Yun, 'A novel approach to exploit LiFePO4 compound as an ambient temperature high capacity anode material for rechargeable lithium batteries', Electrochem. Commun., 6, 1110 (2004). https://doi.org/10.1016/j.elecom.2004.08.014
  15. N. Jayaprakash, and N. Kalaiselvi, 'On the electrochemical behavior of LiMxFe1-xPO4 [M = Cu, Sn;X = 0.02] anodes - An approach to enhance the anode performance of LiFePO4 material', Electrochem. Commun., 9, 620 (2007). https://doi.org/10.1016/j.elecom.2006.10.040
  16. C.Y. Ouyang, S.Q. Shi, Q. Fang, and M.S. Lei, 'Li1+xFePO4 (0≤x≤3) as anode material for lithium ion batteries: From ab initio studies', J. Power Sources, 175, 891 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.116
  17. V. Aravindan, K. Karthikeyan, S. Amaresh, H.S. Kim, D.R. Chang, and Y.S. Lee, 'A novel approach to employ Li2MnSiO4 as anode active material for lithium batteries', Ionics, 17, 3 (2011). https://doi.org/10.1007/s11581-010-0487-1
  18. Z.W. Xiao, G.R. Hu, Z.D. Peng, K. Du, and X.G. Gao, 'Solid state synthesis and characterization of iron(II) pyrophosphate Fe2P2O7', Chin. Chem. Lett., 18, 1523 (2007).
  19. M. Sutapun, R. Muanghlua, S. Niemcharoen, W.C. Vittayakorn, P. Seeharaj, and N. Vittayakorn, 'Synthesis, Characterization and Dielectric Properties of Mn(2-x)ZnxP2O7 Ceramics', Adv. Mat. Res., 802, 12 (2013). https://doi.org/10.4028/www.scientific.net/AMR.802.12