• Title/Summary/Keyword: Metal on metal

Search Result 17,544, Processing Time 0.055 seconds

Predicting the stiffness of shear diaphragm panels composed of bridge metal deck forms

  • Egilmez, Oguz O.
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.213-226
    • /
    • 2017
  • The behavior of building industry metal sheeting under shear forces has been extensively studied and equations have been developed to predict its shear stiffness. Building design engineers can make use of these equations to design a metal deck form bracing system. Bridge metal deck forms differ from building industry forms by both shape and connection detail. These two factors have implications for using these equations to predict the shear stiffness of deck form systems used in the bridge industry. The conventional eccentric connection of bridge metal deck forms reduces their shear stiffness dramatically. However, recent studies have shown that a simple modification to the connection detail can significantly increase the shear stiffness of bridge metal deck form panels. To the best of the author's knowledge currently there is not a design aid that can be used by bridge engineers to estimate the stiffness of bridge metal deck forms. Therefore, bridge engineers rely on previous test results to predict the stiffness of bridge metal deck forms in bracing applications. In an effort to provide a design aid for bridge design engineers to rely on bridge metal deck forms as a bracing source during construction, cantilever shear frame test results of bridge metal deck forms with and without edge stiffened panels have been compared with the SDI Diaphragm Design Manual and ECCS Diaphragm Stressed Skin Design Manual stiffness expressions used for building industry deck forms. The bridge metal deck form systems utilized in the tests consisted of sheets with thicknesses of 0.75 mm to 1.90 mm, heights of 50 mm to 75 mm and lengths of up to 2.7 m; which are representative of bridge metal deck forms frequently employed in steel bridge constructions. The results indicate that expressions provided in these manuals to predict the shear stiffness of building metal deck form panels can be used to estimate the shear stiffness of bridge metal deck form bracing systems with certain limitations. The SDI Diaphragm Design Manual expressions result in reasonable estimates for sheet thicknesses of 0.75 mm, 0.91 mm, and 1.21 mm and underestimate the shear stiffness of 1.52 and 1.90 mm thick bridge metal deck forms. Whereas, the ECCS Diaphragm Stressed Skin Design Manual expressions significantly underestimate the shear stiffness of bridge metal deck form systems for above mentioned deck thicknesses.

A Study on the corrosion property by post treatment in the metal dry etch (Metal 건식각 후처리에 따른 부식 특성에 관한 연구)

  • Mun, Seong-Yeol;Kang, Seong-Jun;Joung, Yang-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.747-750
    • /
    • 2007
  • This study proposes that chlorine residue after metal etch as the source of metal corrosion, and charges should be removed by optimizing etch, PR strip and cleaning condition. Charges distributed along the metal line acts as a source of tungsten (W) plug corrosion when associated with following cleaning solution. In cleaning process after metal etch and PR strip, chemical selection is significantly important in terms of metal corrosion. Optimal corrosion preventive PH, no metal attack (choice of optimal inhibitants), high by product removal efficiency and optimal de ionized water treatment condition is critical to the metal corrosion prevention.

  • PDF

Finite Element Analysis on Stress Distribution in Base Metal-Ceramic Crown Margin Designs (유한요소법을 이용한 비귀금속-도재관 변연부 형태에 따른 응력 분포 분석)

  • Lee, Myung-Kon;Shin, Jung-Woog;Kim, Myung-Duk
    • Journal of Technologic Dentistry
    • /
    • v.22 no.1
    • /
    • pp.79-88
    • /
    • 2000
  • The objective of this finite element method study was to analyze the stress distribution induced in a maxillary central incisor Ni-Cr base metal coping ceramic crowns with various margin design. Margin designs of crown in this experiment were knife-edge metal margin on chamfer finishing line of tooth preparation(M1), butt metal margin on shoulder finishing line(M2), reinforced butt metal margin on shoulder finishing line(M3), beveled metal margin on bevelde shoulder finishing line(M4). Two- dimensional finite element models of crown designs were subjected to a simulated biting force of 100N which was forced over porcelain near the lingual incisal edge. Base on plane stress analysis, the maxium von Miss stresses(Mpa) in porcelain venner was 0.432, in metal coping was 0.579, in dentin abutment was 0.324 for M1 model, and M2 model revealed in porcelain was 0.556, in metal coping was 0.511, in dentin was 0.339, and M3 model revealed in porcelain was 0.556, in metal coping was 0.794, in dentin was 0.383 for M4 model. All values of each material in metal-ceramic crown were much below the critical failure values.

  • PDF

Influence of metal annealing deposited on oxide layer

  • Kim, Eung-Soo;Cho, Won-Ju;Kwon, Hyuk-Choon;Kang, Shin-Won
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.365-368
    • /
    • 2002
  • We investigated the influence of RTP annealing of multi-layered metal films deposited on oxides layer. Two types of oxides, BPSG and P-7205, were used as a bottom layer under multi-layered metal film. The bonding was not good in metal/BPSG/Si samples because adhesion between metal layer and BPSG oxide layer was poor by interfacial reaction during RTP annealing above 650$^{\circ}C$. On the other hand bonding was always good in metal/ P-TEOS /Si samples regardless of annealing temperature. We observed the interface between oxide and metal layers using AES and TEM. The phosphorus and oxygen profile in interface between metal and oxide layers were different in metal/BPSG/Si and metal/P-TEOS/Si samples. We have known that the properties of interface was improved in metal/BPSG/Si samples when the sample was annealed below 650$^{\circ}C$.

  • PDF

Comparison of the marginal fit of POM restorations with different thickness of metal copings (코핑 두께의 차이에 따른 POM 보철물의 변연적합도 연구)

  • Lim, Hyung-Tek
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.135-143
    • /
    • 2012
  • Purpose: The purpose of this in vitro study was to compare the marginal fit of POM restorations with 3 different thickness of metal coping. Methods: 2.0mm Occlusal reduction, 1.0mm preparation of axial wall with 6degree taper, and chamfer margin was prepared a maxillary first premolar on dentiform. Duplicate prepared die and, make 30 individual dies with Ni-Cr metal. Make 3 groups of 30 press ceramic on Metal crown with different thickness of metal coping; 10 of 0.1mm, 10 of 0.3mm, 10 of 0.5mm thickness metal coping. The marginal fit of the crowns was evaluated 50 points per 1 crown, around the crown margin circumference under a optical microscope at original magnification ${\times}100$. A 1-way analysis of variance (ANOVA) was used to compare data. Results: The mean marginal discrepancy for POM with 0.1mm metal copings was $72.56{\mu}m$, $67.83{\mu}m$ for 0.3mm metal coping POMs, and $72.56{\mu}m$ for 0.5mm metal coping POM. The 1-way ANOVA showed significant difference among 3 groups. Conclusion: The marginal fit of pressed-on-metal (POMs) was best with 0.3mm thickness of metal coping, fallowing by 0.1mm, and 0.5mm in the order.

Development of Hazardous Objects Detection Technology based on Metal/Non-Metal Detector (금속/비금속 복합센서기반 위험물 탐지기술 개발)

  • Yoo, Dong-Su;Kim, Seok-Hwan;Lee, Jeong-Yeob;Lee, Seok-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.120-125
    • /
    • 2014
  • Conventional handheld metal detectors use a single induction coil to detect the metallic parts of explosive objects, and the detector generates an acoustic signal from its magnetic response to a metallic object so that an operator can confirm the existence of mines. Though metal detectors have very useful detection mechanisms to find mines, it is easy to cause a high false alarm ratio due to the detection of non-explosive metallic items such as cans, nails and other pieces of metal, etc. Also, because of the physical characteristic of a metal detector it is hard to detect non-metallic objects such as mines made of wood or plastic. Furthermore, the operator must move it to the left and right slowly and repeatedly to attain enough sensor signals to confirm the existence of mines using only a monotonous acoustic signal. To resolve the disadvantages of handheld detectors, many new approaches have been attempted, such as an arrayed detector and a visualization algorithm based on metal/non-metal sensor. In this paper, we introduce a visualization algorithm with a metal/non-metal complex sensor, an arrayed metal/non-metal sensor and the their testing and evaluation.

Densification Behavior of Metal Powder Under Warm Isostatic Pressing with a Metal Mold (금속 몰드를 이용한 금속 분말의 온간 등가압 성형)

  • Park, Jung-Goo;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.838-847
    • /
    • 2004
  • The effect of a metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with a metal mold. We use lead as a metal mold and obtain experimental data of metal mold properties. To simulate densification behavior of metal powder, elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with a metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

Densification behavior of metal powder under warm isostaic pessing with metal mold (금속 몰드를 이용한 금속 분말의 온간 등가압 성형)

  • Park, Jung-Goo;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1352-1357
    • /
    • 2003
  • The effect of the metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with metal mold. We use lead as metal mold and obtain experimental data of metal mold property. To simulate densification of metal powder, the elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

  • PDF

The role of chemical bond as the preparation of polynuclear metal dendritic molecule for PDD or PDT

  • Choi, Chang-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.391-393
    • /
    • 2022
  • The preparation of polynuclear metal dendritic molecule for photodynamic diagnosis(PDD) or photodynamic therapy(PDT) has been interested on design and synthesis of metal-to-metal long ranged macromolecule. Herein, imine bond or amide bond as chemical bond is an important role on the construction of energy transfer or electron transfer system. Therefore, we will be presented on the role of chemical bond for the preparation of polynuclear metal dendritic molecule.

  • PDF

A STUDY ON FRACTURE STRENGTH OF COLLARLESS METAL CERAMIC CROWN WITH DIFFERENT METAL COPING DESIGN (금속코핑 설계에 따른 Collarless Metal Ceramic Crown의 파절강도에 관한 연구)

  • Yun, Jong-Wook;Yang, Jae-Ho;Chang, Ik-Tae;Lee, Sun-Hyung;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.4
    • /
    • pp.454-464
    • /
    • 1999
  • The metal ceramic crown is currently the most popular complete veneer restoration in dentistry, but in many cases, the metal cervical collar at the facial margin is unesthetic and unacceptable. Facial porcelain margin has been used in place of it. But this dose not solve the problems, such as dark gingival discoloration and cervical opaque reflection of porcelain veneer. Recently, metal copings which were designed to terminate its labio-cervical end on the axial walls coronal to the shoulder have been clinically used to solve the esthetic problem of metal ceramic crown. But in this design, porcelain veneer of labio-cervical area which is not supported by metal may not be able to resist the stress during cementation and mastication. The purpose of this study was to evaluate fracture strength and fractured appearance of crowns according to different coping designs. A resin maxillary left central incisor analogue was prepared for a metal ceramic crown, and metal dies were made with duplication mold. Metal copings were made and assigned to one of four groups based on facial framework designs: group 1, coping with 0.5mm metal collar; group 2, metal extended to the shoulder; group 3, metal extended to 1mm coronal tn the shoulder: group 4, metal extended to 2mm coronal to the shoulder. Copings and crowns were adjusted to be same size and thickness, and cemented to metal dies with zinc phosphate cement by finger pressure. Fracture strength was measured with Instron Universal Testing Machine. Metal dies were anchored in Three-way-vice at 3mm below finish line and at $130^{\circ}$ inclined to the long axis of the crown. Load was directed lingually at 2mm below midincisal edge. Load value at initial crack and at catastrophic fracture was recorded. The results obtained were as follows : 1. Fracture strength values at initial crack were higher in groups 1, 2 than in groups 3, 4 but this difference was not statistically significant(P<0.05). 2. Conventional metal collared crown had greater catastrophic fracture strength than any other collarless crowns. 3. The greater the labial metal coping reduction, the lower the catastrophic fracture strength of crowns but when more than 1mm of labial metal reduction was done, the difference in strengths was not statistically significant(p<0.05). 4. The strongest collarless coping design was group 2.

  • PDF