• Title/Summary/Keyword: Metal chelate

Search Result 124, Processing Time 0.027 seconds

Synthesis of 8-HQR and 8-HQRS Chelate Resins and It's Ion Exchange Properties (8-HQR 및 8-HQRS 킬레이트 수지의 합성과 그의 이온교환 성질)

  • Dong Won Kim;Kong Soo Kim;Hong Soo Kim
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.69-75
    • /
    • 1986
  • 8-Hydroxyquinoline-resorcinol(8-HQR) and 8-hydroxyquinoline-resorcinol-salicylic acid (8-HQRS) chelate resins were prepared by the condensation reaction of 8-hydroxyquinoline, or 8-hydroxyquinoline-salicylic acid, in the presence of resorcinol with formaldehyde. The ion exchange capacities of 8-HQR and 8-HQRS resins were 4.1 meq/g and 5.4 meq/g, respectively. The adsorption and distribution coefficient of metal ions, such as Fe(III), Cu(II), Pb(II), Co(II) and Ni(II) on these resins were discussed. The adsorption of metal ions on these chelate resins showed that the maximum adsorption condition is pH 7. And the distribution coefficient of metal ions on these resins was increased with decreasing of hydrochloric acid concentration.

  • PDF

The Effects of Rotational Correlation Time of Paramagnetic Contrast Agents on Relaxation Enhancement: Partial Binding to Macromolecules (거대분자에 부분적으로 결합한 상자성 자기공명 조영제의 회전속도가 이완증강에 미치는 영향)

  • 장용민
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.159-166
    • /
    • 1999
  • Purpose : To evaluate the effect of rotational correlation time (${\tau}_R$) and the possible related changes of other parameters, ${\tau}_M,{\;}{\tau}_S,{\;}and{\;}(\tau}_V$ of gadolinium (Gd) chelate on T1 relaxation enhancement in two pool model. Materials and Methods : The NMRD (Nuclear Magnetic Relaxation Dispersion) profiles were simulated from 0.02 MHz to 800 MHz proton Larmor frequency for different values of rotational correlation times based on Solomon-Bloembergen equation for inner-sphere relaxation enhancement. To include both unbound pool (pool A) and bound pool (pool B), the relaxivity was divided by contribution from unbound pool and bound pool. The rotational correlation time for pool A was fixed at the value of 0.1 ns, which is a typical value for low molecular weight complexes such as Gd-DTPA in solution and ${\tau}_R$ for pool B was changed from 0.1 ns to 20 ns to allow the slower rotation by binding to macromolecule. The fractional factor of was also adjusted from 0 to 1.0 to simulate different binding ratios to macromolecule. Since the binding of Gd-chelate to macromolecule cab alter the electronic environment of Gd ion and also the degree of bulk water access to hydration site of Gd-chelate, the effects of these parameters were also included. Results : The result shows that low field profiles, ranged from 0.02 to 40 MHz, and dominated by contribution from bound pool, which is bound to macromolecule regardless of binding ratios. In addition, as more Gd-chelate bound to macromolecule, sharp increase of relaxivity at higher field occurs. The NMRD profiles for different values of ${\tau}_S$ show the enormous increase of low field profile whereas relaxivity at high field is not affected by ${\tau}_S$. On the other hand, the change in ${\tau}$V does not affect low field profile but strongly in fluences on both inflection fie이 and the maximum relaxivity value. The results shows a fluences on both inflection field and the maximum relaxivity value. The results shows a parabolic dependence of relaxivity on ${\tau}_M$. Conclusion : Binding of Gd-chelate to a macromolecule causes slower rotational tumbling of Gd-chelate and would result in relaxation enhancement, especially in clinical imaging field. However, binding to macromolecule can change water enchange rate (${\tau}_M$) and electronic relaxation ($T_le$) vis structural deformation of electron environment and the access of bulk water to hydration site of metal-chelate. The clinical utilities of Gd-chelate bound to macromolecule are the less dose requirement, the tissue specificity, and the better perfusion and intravascular agents.

  • PDF

Novel Group 9 Metal Complexes Containing an S,S'-Chelating o-Carboranyl Ligand System: Synthesis, Crystal Structures, and Electrochemical Properties of Dinuclear [{(cod)M}2(S,S'-S2C2B10H10)] (cod = 1,5-cyclooctadiene;M = Rh OR Ir)] and Mononclear Cp*CoI[S,S'-S(S=PMe2)C2B10H10] Metal Complexs

  • Lee, Jong-Dae;Kim, Bo-Young;Lee, Chong-Mok;Lee, Young-Joo;Ko, Jae-Jung;Kang, Sang-Ook
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1012-1019
    • /
    • 2004
  • The synthesis of novel group 9 metal complexes containing the S,S'-chelate ligands, $Li_2S_2C_2B_{10}H_{10}$ (2a) and $LiS(S=PMe_2)C_2B_{10}H_{10$} (2b), is described. Two new dinuclear complexes of the type $[{(cod)M}_2(S,S'-S_2C_2B_{10}H_{10})]$ (cod = 1,5-cyclooctadiene; M = Rh (3a), or Ir (3b)) were synthesized by the reaction of chloridebridged dimers $[M({\mu}-Cl)(cod)]_2$ with one molar equivalent of the corresponding dilithium dithiolato ligand $Li_2S_2C_2B_{10}H_{10}$ (2a). X-ray crystal structure analysis of 3a revealed a dinuclear structure in which each (cod)Rh unit is attached to a distinct sulfur atom of a 1,2-dithio-o-carboranyl ligand (2a). Additionally, the electrochemical properties of 3a and 3b were investigated by cyclic voltammetry. In an analogous manner, reaction of the lithium dithiolato ligand $LiS(S=PMe_2)C_2B_{10}H_{10}$ (2b) with $Cp^{\ast}CoI_2(CO)$ produced a mononuclear dithiolato complex, $[Cp^{\ast}CoI{(S,S'-S(S=PMe_2)C_2B_{10}H_{10})}]$ (4), which was characterized by single-crystal X-ray analysis.

A Study on the Removal of Heavy Metals Using Functional Group on the Surface of Discarded Automotive Tires (폐타이어 표면에 형성되는 Functional Group을 이용한 중금속 제거에 관한 연구)

  • Lee, Yong-Doo;Ko, Deuk-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.357-364
    • /
    • 2007
  • This research is to set a direction on the recycle of Discarded Automotive tires reforming them into heavy metal adsorbents by developing a particular functional group inducing formation of Chelate complexes with heavy metal ion in the water, on the surface of the used tire conventionally turned into powdered form. For this purpose, through FT-IR, XRD, XRF, SEM, elution test we confirmed and analyzed the property of newly reformed scrapped tires, and functional group. Also, by Kinetics Study we produced an invariable value applying to absorption models. Conclusively the absorption preference of heavy metal is determined to be $Pb^{2+}>Cu^{2+}>Cd^{2+}$, and it reached absorption balance within first 30 minutes, also the absorption reaction time increased from 0.27 to $1.78\sim3.15(g/mg{\cdot}min)$, and showed more than 80% of removal efficiency. This result proved that the efficiency increased by 10 times compared with the conventional powdered Discarded Automotive tires, and the Discarded Automotive tire which implemented the Functional group can exhibit a great efficiency as heavy metal adsorbent.

Studies on the Heavy Metal Removal Characteristics of $FeS_(S)$ in the Presence of Organic Ligand (유기 리간드 존재하에서 $FeS_{(S)}$의 중금속 제거 특성 연구)

  • 박상원;박병주
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.411-417
    • /
    • 1999
  • The interfacial chemical behavior, lattice exchange and dissolution, of $FeS_{(S)}$ as one of the important sulfide minerals was studied. Emphases were made on the surface characterization of hydrous $FeS_{(S)}$, the lattice exchange of Cu(II) and $FeS_{(S)}$, and its effect on the dissolution of $FeS_{(S)}$, and also affect some organic ligands on that of both Cu(II) and $FeS_{(S)}$. Cu(II) which has lower sulfide solubility in water than $FeS_{(S)}$ undergoes the lattice exchange reaction when Cu(II) ion contacts $FeS_{(S)}$ in the aqueous phase. For heavy metals which have higher sulfide solubilities in water than $FeS_{(S)}$, these metal ions were adsorbed on the surface of $FeS_{(S)}$. Such a reaction was interpreted by the solid solution formation theory. Phthalic acid(a weak chelate agent) and EDTA(a strong chelate agent) were used to demonstrate the effect of organic lignads on the lattice exchange reaction between Cu(II) and $FeS_{(S)}$. The $pH_{zpc}$ of $FeS_{(S)}$ is 7 and the effect of ionic strength is not showed. It can be expected that phthalic acid has little effect on the lattice exchange reaction between Cu(II) and $FeS_{(S)}$. whereas EDTA has very decreased the removal of Cu(II) and $FeS_{(S)}$. This study shows that stability of sulfide sediments was predicted by its solubility. The pH control of the alkaline-neutralization process to treat heavy metal in wastewater treatment process did not needed. Thereby, it was regarded as an optimal process which could apply to examine a long term stability of marshland closely in the treatment of heavy metal in wastewater released from a disussed mine.

  • PDF

Effect on Bleaching Efficiency by Chelating Treatment in Sugarcane Bagasse DEDP Bleaching Process (사탕수수 부산물 펄프의 DEDP 표백 시 킬레이트 전처리가 표백 효율에 미치는 영향)

  • Lee, Jai-Sung;Song, Woo-Yong;Park, Jong-Moon;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.81-87
    • /
    • 2015
  • Soda-AQ pulp made from sugarcane bagasse (SCB) were bleached in element chlorine free (ECF) sequence. To reduce chlorine dioxide use, final peroxide bleaching was introduced. Prior to peroxide bleaching, different chelating chemicals were applied for comparative analysis in ISO brightness and viscosity. When using equal total chlorine dioxide usage (4.5%), bleached SCB pulp using chelate and hydrogen peroxide (DEDQP) was reached 86.8% (DTPA), 86.4% (EDTA) ISO brightness, whereas bleached pulp using only hydrogen peroxide (DEDP) reached at 81.2% ISO brightness. Viscosity of DEDQP bleached pulp was 25.6 cPs (DTPA), 25.2 cPs (EDTA), And DEDP bleached pulp was shown 18.0 cPs viscosity. Decreasing of transition metal by chelate process led to improvements in final brightness along with higher viscosity. Due to EDTA is 5-7 times cheaper than DTPA, EDTA is recommended as chelating chemical prior to peroxide bleaching.

Synthesis and Characterization of Substituted Quinoline Complexes of Molybdenum(I) Oxo Molybdenum(V) Complexes of Substituted 8-Quinolinols (몰리브덴(V)의 퀴놀린계 착물합성과 그 성질 (제1보) 치환-8-퀴놀린올의 옥소몰리브덴 (V) 착물)

  • Lee Kwang;Sang-Oh Oh
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.372-381
    • /
    • 1985
  • Oxo molybdenum (V) complexes of substituted 8-quinolinols were synthesized and characterized by means of the investigation of elemental analysis, infrared spectra, electron spectra, electric conductivity and mass spectrometry compared with oxo molybdenum (VI) complexes. Oxo molybdenum(V) complexes were nonelectrolyte and one strong band of stretching mode of molybdenum and terminal oxygen appeared approximately $940cm^{-1}$. Oxo molybdenum(VI) complexes gave two peaks corresponding molybdenum containing ions, a molecular ion (I) of a 2 : 1 (ligand : metal) chelate and a fragment ion (II) of a 1:1 chelate due to the loss of ligand radical from ion (I). Molybdenum(V) complexes were observed the fragment ion(II) of a 1 : 1 chelate partly. The electronic spectra corresponding to d-d transition and charge transfer transition were observed and interpreted.

  • PDF

Rapid Determination of Electroplating Solutions (1) -Copper from Copper Plating Solutions (각종 도금액의 신속분석법 (제 1 보))

  • 염희택
    • Journal of the Korean institute of surface engineering
    • /
    • v.1 no.1
    • /
    • pp.5-13
    • /
    • 1967
  • Up to this date, numerous methods of analysis of electropling solutions are published. Some, however, need lots of works before reaching final results, or require high technique and special instruments, and also some are unaccurate due to unclearnes of end point. Like our undevelop countries, technicians of electroplating shops are most high school graduates or under, and have not much knowledge on chemistry. Furthermore, those technicians have to control their plating solutions by themselves without having enough analytical laboratory equipment . Therefore, in this paper the simplest, besides accurate method is investigated after comparing numerous methods published. Among the methods of copper determinations from acid and alkaline copper plating baths, EDTA titration method are chosen, due to these methods are the simpest and fastest for the evaluation of metal content, without requirng any special instrument. For acid copper solutions, chelate titrations were accurate enough. Since the end point of titration of chelate method is variable according to the kind of indicators and other metal's coexisitence as well as solution component, many difficulties were encountered from cyanide copper, on the contrary of acid copper bath. PAN , PV, and MX indicators were tried , but it is found that MX is the best. In chyanide solution ,due to cyanide is the masking reagent , elimination of this component is essential , and finally found that elimination CN-by precipitation with AgNO$_3$ solution was the simplest and the most accurate way among others. This method was very accurate for the new plating solutions even coexistence with organic brightners. However used solutions for long months running have to be predetermined the accurate copper value by thiosulfate method form time to time, before chelate titration by means of AgNO$_3$ precipitation. Always some constant deviations will be seen according to the solutions nature. Therefore those deviation values have to be compensated each time.

  • PDF