• 제목/요약/키워드: Metaheuristics

검색결과 35건 처리시간 0.018초

전력기기 특성 및 가동 지연 불편도를 고려한 실시간 급작 수요 협상 프레임웍 기반 스마트 그리드 시스템 (Real Time Sudden Demand Negotiation Framework based Smart Grid System considering Characteristics of Electric device type and Customer' Delay Discomfort)

  • 유대선;이현수
    • 전기학회논문지
    • /
    • 제68권3호
    • /
    • pp.405-415
    • /
    • 2019
  • The considerations of the electrical device' characteristics and the customers' satisfaction have been important criteria for efficient smart grid systems. In general, an electrical device is classified into a non-interruptible device or an interruptible device. The consideration of the type is an essential information for the efficient smart grid scheduling. In addition, customers' scheduling preferences or satisfactions have to be considered simultaneously. However, the existing research studies failed to consider both criteria. This paper proposes a new and efficient smart grid scheduling framework considering both criteria. The framework consists of two modules - 1) A day-head smart grid scheduling algorithm and 2) Real-time sudden demand negotiation framework. The first method generates the smart grid schedule efficiently using an embedded genetic algorithm with the consideration of the device's characteristics. Then, in case of sudden electrical demands, the second method generates the more efficient real-time smart grid schedules considering both criteria. In order to show the effectiveness of the proposed framework, comparisons with the existing relevant research studies are provided under various electricity demand scenarios.

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Seyed Milad Hosseini;Mohamad Mohamadi Dehcheshmeh;Gholamreza Ghodrati Amiri
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.555-574
    • /
    • 2023
  • An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.

Static Homogeneous Multiprocessor Task Graph Scheduling Using Ant Colony Optimization

  • Boveiri, Hamid Reza;Khayami, Raouf
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.3046-3070
    • /
    • 2017
  • Nowadays, the utilization of multiprocessor environments has been increased due to the increase in time complexity of application programs and decrease in hardware costs. In such architectures during the compilation step, each program is decomposed into the smaller and maybe dependent segments so-called tasks. Precedence constraints, required execution times of the tasks, and communication costs among them are modeled using a directed acyclic graph (DAG) named task-graph. All the tasks in the task-graph must be assigned to a predefined number of processors in such a way that the precedence constraints are preserved, and the program's completion time is minimized, and this is an NP-hard problem from the time-complexity point of view. The results obtained by different approaches are dominated by two major factors; first, which order of tasks should be selected (sequence subproblem), and second, how the selected sequence should be assigned to the processors (assigning subproblem). In this paper, a hybrid proposed approach has been presented, in which two different artificial ant colonies cooperate to solve the multiprocessor task-scheduling problem; one colony to tackle the sequence subproblem, and another to cope with assigning subproblem. The utilization of background knowledge about the problem (different priority measurements of the tasks) has made the proposed approach very robust and efficient. 125 different task-graphs with various shape parameters such as size, communication-to-computation ratio and parallelism have been utilized for a comprehensive evaluation of the proposed approach, and the results show its superiority versus the other conventional methods from the performance point of view.

Constrained Relay Node Deployment using an improved multi-objective Artificial Bee Colony in Wireless Sensor Networks

  • Yu, Wenjie;Li, Xunbo;Li, Xiang;Zeng, Zhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.2889-2909
    • /
    • 2017
  • Wireless sensor networks (WSNs) have attracted lots of attention in recent years due to their potential for various applications. In this paper, we seek how to efficiently deploy relay nodes into traditional static WSNs with constrained locations, aiming to satisfy specific requirements of the industry, such as average energy consumption and average network reliability. This constrained relay node deployment problem (CRNDP) is known as NP-hard optimization problem in the literature. We consider addressing this multi-objective (MO) optimization problem with an improved Artificial Bee Colony (ABC) algorithm with a linear local search (MOABCLLS), which is an extension of an improved ABC and applies two strategies of MO optimization. In order to verify the effectiveness of the MOABCLLS, two versions of MO ABC, two additional standard genetic algorithms, NSGA-II and SPEA2, and two different MO trajectory algorithms are included for comparison. We employ these metaheuristics on a test data set obtained from the literature. For an in-depth analysis of the behavior of the MOABCLLS compared to traditional methodologies, a statistical procedure is utilized to analyze the results. After studying the results, it is concluded that constrained relay node deployment using the MOABCLLS outperforms the performance of the other algorithms, based on two MO quality metrics: hypervolume and coverage of two sets.

유전알고리즘 기반의 사용자 파라미터 설정과 코드 진행을 고려한 리듬과 멜로디 자동 작곡 시스템 (An Automatic Rhythm and Melody Composition System Considering User Parameters and Chord Progression Based on a Genetic Algorithm)

  • 정재훈;안창욱
    • 정보과학회 논문지
    • /
    • 제43권2호
    • /
    • pp.204-211
    • /
    • 2016
  • 본 논문에서는 주어진 코드 진행에서 비화성음을 활용한 화려한 멜로디를 자동으로 생성하는 새로운 진화적 자동 음악 작곡 시스템을 제안한다. 전체 시스템은 리듬 생성과 멜로디 생성의 두 단계로 나누어지며, 사용자 설정 파라미터로 제어되는 리듬 적합도 평가 함수와 화성학 기반으로 설계된 멜로디 적합도 평가 함수, 그리고 멜로디 최적화 성능 향상을 위해 설계된 음악적 문맥을 고려한 진화연산을 소개한다. 제안하는 리듬 적합도 평가 함수의 최적화에서 표준 유전알고리즘과 엘리티즘이 적용된 유전알고리즘, 차분진화 알고리즘, 그리고 입자군집최적화 알고리즘의 비교 실험을 하였으며, 멜로디 적합도 평가함수 최적화에서 위 4가지 알고리즘과 제안하는 진화연산을 적용한 유전알고리즘과의 비교 실험을 통해 성능을 검증하고, 생성된 멜로디에 대한 음악적 분석을 수행하였다.