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Abstract 

 
Nowadays, the utilization of multiprocessor environments has been increased due to the 
increase in time complexity of application programs and decrease in hardware costs. In such 
architectures during the compilation step, each program is decomposed into the smaller and 
maybe dependent segments so-called tasks. Precedence constraints, required execution times 
of the tasks, and communication costs among them are modeled using a directed acyclic 
graph (DAG) named task-graph. All the tasks in the task-graph must be assigned to a 
predefined number of processors in such a way that the precedence constraints are preserved, 
and the program’s completion time is minimized, and this is an NP-hard problem from the 
time-complexity point of view. The results obtained by different approaches are dominated 
by two major factors; first, which order of tasks should be selected (sequence subproblem), 
and second, how the selected sequence should be assigned to the processors (assigning 
subproblem). In this paper, a hybrid proposed approach has been presented, in which two 
different artificial ant colonies cooperate to solve the multiprocessor task-scheduling 
problem; one colony to tackle the sequence subproblem, and another to cope with assigning 
subproblem. The utilization of background knowledge about the problem (different priority 
measurements of the tasks) has made the proposed approach very robust and efficient. 125 
different task-graphs with various shape parameters such as size, communication-to-
computation ratio and parallelism have been utilized for a comprehensive evaluation of the 
proposed approach, and the results show its superiority versus the other conventional 
methods from the performance point of view.    
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1. Introduction 

Today, most application programs are too time-consuming to be executed on a regular single 
CPU machine. On the other hand, hardware costs are decreasing constantly, and on these 
bases, the trends to utilize multiprocessor environments such as parallel and distributed 
systems have been increased a lot. In such architectures, each program is divided into the 
smaller and maybe dependent segments named tasks. Some tasks need the data generated by 
the other tasks; hence, there will be precedence constraints among tasks, and the problem can 
be modeled using a directed acyclic graph (DAG) so-called task graph. In a task graph, nodes 
are tasks, and edges indicate precedence constraints among them. In the static scheduling, all 
the parameters such as required-execution-times of the tasks, communication costs/delays, 
and precedence constraints are determined during the program's compilation step. All the 
tasks in the task graph should be mapped into a number of processors with respect to their 
precedence so that the overall finish time of the given program is minimized. 

Multiprocessor task scheduling is an NP-hard problem from the time complexity point of 
view [1]; therefore, different intelligent heuristic and metaheuristic approaches and algorithms 
have already been introduced in the literature to find suboptimal solutions in a timely manner 
[2]. Most of the conventional task-scheduling approaches, such as HLFET (Highest Level 
First with Estimated Time) [3], ISH (Insertion Scheduling Heuristic) [4], CLANS (which uses 
the cluster-like CLANs to partition the task graph) [5], LAST (Localized Allocation of Static 
Tasks) [6], ETF (Earliest Time First) [7], DLS (Dynamic Level Scheduling) [8], and MCP 
(Modified Critical Path) [9], are based on the list-scheduling technique. That is, these 
approaches make a list of ready tasks at each stage and assign them some priorities. The ready 
tasks are either those without any parents or without any unscheduled ones. Then, the task 
with the most priority in the ready-list is selected to be assigned to the processor that allows 
the earliest start time (EST), until all the tasks in the task graph are scheduled.  

The makespans (finish-times) achieved by such methods are dominated by two major 
factors: first, which order of tasks should be selected (sequence subproblem), and second, 
how the selected sequence should be assigned to the processors (assigning subproblem). The 
author was the first who explicitly distinguished and presented these two disparate-in-nature 
subproblems, and introduced two different ACO-based approaches in [10] and [11], to tackle 
the sequence and assigning subproblems, respectively. In this paper, we combine these two 
robust approaches together, and propose a hybrid method in which two different artificial ant 
colonies cooperate to solve the multiprocessor task-scheduling problem; one colony works to 
tackle the sequence subproblem, and try to find the most appropriate sequence of tasks, and 
another to cope with assigning subproblem, and maps the selected sequence to the existing 
processor elements.  

Ant colony optimization (ACO) is a metaheuristic approach simulating social behavior of 
real ants. Ants always find the shortest path from the nest to the food and vice versa. Artificial 
counterparts try to find the shortest solution of the given problem on the same basis. Dorigo et 
al. was the first who utilized ant algorithm as a multi-agent approach to solve the traveling 
sales man problem (TSP) [12], and after that, it has been successfully used in order to solve a 
large number of difficult discrete optimization problems [13]. We believe that ACO is one of 
the best methods to cope with such kinds of problems presented by a graph because the ants, 
to find the shortest path to solve the given problem, are using an indirect local communication 
called stigmergy. Stigmergy actually retains the experiences faced by all the previous ants, 
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and lets the ACO to be fast and efficient in comparison with other metaheuristic and 
evolutionary algorithms. 

It should be emphasized that each scheduling problem, such as job-shop scheduling, flow-
shop scheduling, project scheduling, task-scheduling in heterogeneous environments (or grid 
computing), task scheduling in cloud, multi-core task-scheduling and so on, has its own 
review, taxonomy, definition, datasets and literature varying based on the different natures of 
the environment in-use and the objectives to be considered. That is, a certain heuristic or 
metaheuristic approach proposed for one of these scheduling problems cannot be applied for 
the others but with some/huge number of modifications in the encoding/decoding mechanism, 
input datasets and utilized algorithm. In addition, an approach efficient for one scheduling 
problem is not necessarily as so for the others, and we need a comprehensive study and 
various sets of experiments to proof that. On these bases, each comparison study can be made 
on its own category; for example, we are not able to compare an ACO-based approach 
introduced for job-shop scheduling or introduced for task-scheduling in grid with our 
approach proposed for static homogeneous multiprocessor task-graph scheduling. We believe 
the most contributions of this study are as follows: 
• The paper formulates static task-graph scheduling in homogeneous multiprocessor 

environments in a comprehensive way using an easy-to-understand taxonomy, notations 
and definitions. 

• A novel high-performance hybrid algorithm based on the meta-heuristic ACO has been 
proposed to tackle the problem, which properly use the background knowledge about the 
problem (priority measurements stated in the Section II) and is very competitive with 
other conventional methods in terms of performance and time-complexity. 

• Different sets of experiments on various input samples with different shape parameters 
have been conducted, and diverse results and conclusions have been made. These 
conclusions not only will better introduce the proposed approach but also will better 
reveal the behavior, strengths and weaknesses of other conventional methods in this 
scheduling category. 

The organization of the rest of the paper is as follows. In the following Section, 
multiprocessor task scheduling problem is surveyed in detail. Ant colony optimization is 
discussed in the Section III. Section IV introduces the proposed approach. Section V is 
devoted to implementation details and results, and finally, the paper is concluded in the last 
Section.  

2. Multiprocessor Task Scheduling 
A directed acyclic graph G = {N, E, W, C} named task graph is used to model the 
multiprocessor task scheduling problem, where N = {n1, n2,…, nn}, E = {(ni, nj) | ni, nj ∈ N} 
W = {w1, w2,…, wn}, C = {c(ni, nj) | (ni, nj) ∈ E), and n are a set of nodes, a set of edges, a set 
of the weights of the nodes, a set of the weights of the edges, and the number of nodes 
respectively.  

Fig. 1 shows the task graph of a real application program comprised of nine different tasks. 
In such graph, nodes are tasks and edges specify precedence constraints among them. Each 
edge such as (ni, nj) ∈ E demonstrates that the task ni must be finished before the starting of 
the task nj. In this case, ni is called a parent, and nj is called a child. Nodes without any parents 
and nodes without any children are called “entry-nodes” and “exit-nodes”, respectively. Each 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3049 

node-weight such as wi is the necessary execution-time for the task ni, and each weight-of-
edge such as c(ni, nj)  is the time required for data transmission from the task ni to the task nj 
identified as communication cost/delay. If both of the tasks ni and nj are executed on the same 
processor, the communication cost will be zero between them. In static scheduling, execution 
times of the tasks, communication costs, and precedence constraints among them are 
generated during the program’s compiling-stage. Tasks should be mapped into the given m 
processor elements such as P = {p1, p2,…, pm} according to their precedence so that the 
overall finish-time (or makespan) of the given program would be minimized.  

Most of the scheduling algorithms are based on the so-called list-scheduling technique. 
The basic idea behind the list-scheduling is to make a sequence of nodes as a list by assigning 
them some priorities, and then, repeatedly removing the most priority node from the list, and 
allocating it to the processor that allows the earliest-start-time (EST), until all the nodes in the 
graph are scheduled.  

If all the predecessors (parents) of the task ni were executed on the processor pj, EST(ni, pj) 
would be Avail(pj) that is, the earliest time at which pj is available to execute the next task; 
otherwise, the earliest-start-time of the task ni on the processor pj should be computed using  
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where AFT(nk) = AST(nk) + wk is the actual finish-time of the task nk, and Parents(ni) is the set 
of all the parents of ni, AST(nk) is the actual start-time of the task nk computed using (2).  
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Fig. 1. The task graph of a program with nine tasks inside [16]. 
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Finally, the total finish-time of the inputted parallel program can be calculated using (3). 
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For a given task-graph with n tasks inside using its adjacency matrix, an efficient 
implementation of the EST method for assigning all the tasks in the task-graph to a given m 
identical processors has a time-complexity belonging to O(mn2) [2]. 

The efficiency of each related approach introduced in the literature is often originated from 
how they exploit the background knowledge about the problem, also called task’s priority 
measurements. Some of these measurements frequently used to assign priority to the tasks are 
TLevel (Top-Level), BLevel (Bottom-Level), SLevel (Static-Level), ALAP (As-Late-As-
Possible), and the new proposed NOO (The-Number-Of-Offspring) [19]. The TLevel or ASAP 
(As-Soon-As-Possible) of a node ni is the length of the longest path from an entry-node to the 
ni excluding ni itself, where the length of a path is the sum of all the nodes and edges weights 
along the path. The TLevel of each node in the task graph can be computed by traversing the 
graph in the topological order using (4). 
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The BLevel of a node ni is the length of the longest path from ni to an exit-node. It can be 
computed for each task by traversing the graph in the reversed topological order, as follows: 
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where Children(ni) is the set of all the children of ni.  
If the edges weights are not considered in the computation of BLevel, a new attribute 

called Static-Level or simply SLevel can be generated using (6). 
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 The ALAP start-time of a node is a measure of how far the node's start-time can be 
delayed without increasing the overall schedule-length. It can be drawn for each node using  
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where CPL is the Critical-Path-Length, that is, the length of the longest path in the given task 
graph.  

Finally, the NOO of ni is simply the number of all its descendants (or offspring) computed 
for each task in the task graph using (8). 
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 Table 1 lists the above-mentioned measures for each node in the task graph of Fig. 1. In 
addition, a comprehensive list of the notations applied in this Section is reviewed in Table 2. 
To open up how these measures can be utilized in order to schedule the tasks of a task-graph, 
five well-known traditional list-scheduling algorithms will be surveyed as follows.  
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A. The HLFET Algorithm 
The HLFET (Highest Level First with Estimated Times) [3] first calculates the SLevel of each 
node in the task-graph. Then, make a ready-list in the descending order of SLevel. At each 
instant, it schedules the first node in the ready-list to the processor that allows the earliest-
execution-time (using the non-insertion approach) and then, updates the ready-list by inserting 
the new nodes ready now to execute, until all the nodes are scheduled. For this algorithm, the 
time-complexity of the sequencing subproblem for a task-graph with n tasks is O(n2), where 
assigning tasks to the m given processor using EST belongs to O(mn2). Fig. 2 (a) shows the 
scheduling Gantt chart of the graph in Fig. 1 using HLFET algorithm on two processor 
elements (the gaps between the tasks are because of the latencies inspired from the 
communication costs). 

B. The MCP Algorithm 
The MCP (Modified Critical Path) algorithm [9] uses the ALAP of the nodes as the priority. It 
first computes the ALAP times of all the nodes, and then constructs a ready-list in the 
ascending order of ALAPs. Ties are broken by considering the ALAP times of the children of 
the nodes. The MCP algorithm then schedules the nodes in the list one by one to the processor 
that allows the earliest-start-time using the insertion approach. For this algorithm, the time-
complexity of the sequencing subproblem for a task-graph with n tasks is O(n2log n), where 
assigning tasks to the m given processor using EST belongs to O(mn2). The scheduling of the 
task graph in Fig. 1 using MCP algorithm on two processor elements is shown by Fig. 2 (b). 

C. The DLS Algorithm 
The DLS (Dynamic Level Scheduling) algorithm [8] uses an attribute called dynamic-level 
(or DL) that is the difference between the SLevel of a node and its earliest-start-time on a 
processor. At each scheduling step, the DLS algorithm computes the DL for every node in the 
ready-list for all processors. The node-processor pair that gives the largest DL is selected to 
schedule, until all the nodes are scheduled. The algorithm tends to schedule nodes in a 
descending order of SLevel at the beginning, but nodes in an ascending order of their TLevel 
near the end of the scheduling process. The overall time-complexity of algorithm belongs to 

Table 1. TLevel, BLevel, SLevel, ALAP, and NOO of Each 
Node in the Task Graph of Fig. 1. 

 
Node TLevel BLevel SLevel ALAP NOO 

n1 0 37 12 0 8 

n2 6 23 8 14 4 

n3 3 23 8 14 3 

n4 3 20 9 17 2 
n5 3 30 10 7 2 
n6 10 15 5 22 1 

n7 22 15 5 22 1 

n8 18 15 5 22 1 

n9 36 1 1 36 0 
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O(mn3). Fig. 2 (c) shows scheduling of the task graph in Fig. 1 using DLS algorithm on two 
processor elements. 

D. The ETF Algorithm 
The ETF (Earliest Time First) algorithm [7] computes the earliest-start-times for all the nodes 
in the ready-list by investigating the start-time of a node on all processors exhaustively. Then, 
it selects the node that has the smallest start-time for scheduling; ties are broken by selecting 
the node with the higher SLevel priority. The overall time-complexity of algorithm belongs to 
O(mn3). The scheduling of the task graph in Fig. 1 using EST algorithm on two processor 
elements is shown by Fig. 2 (d).  

E. The ISH Algorithm 
The ISH (Insertion Scheduling Heuristic) algorithm [4] uses the schedule-holes, the idle time 
slots, in the partial schedules. The algorithm tries to fill the holes by scheduling other nodes 
into them, and use SLevel as the priority measurement of a node. The overall time-complexity 
of the algorithm is O(mn2), and Fig. 2 (e) shows scheduling Gantt chart for the task graph in 
Fig. 1 using ISH algorithm on two processor elements. 

Table 2. A Comprehensive List of the Notations Applied to Formulate the Multiprocessor Task 
Graph-Scheduling Problem  

Symbol Description 

G = (N, E, W, C) A given task graph 

N = {n1, n2,…, nn} Set of tasks in the task graph 

E = {(ni, nj) | ni, nj ∈ N} Set of edges (precedence constraints) among tasks in the task graph 

W = {w1, w2,…, wn} Set of the required execution times of the tasks 

C = {c(ni, nj) | (ni, nj) ∈ E) Set of the communication costs (delays) among tasks in the task graph 

n The number of tasks in the task graph 

entry-node A node without any parents  

exit-node A node without any children 

P = {p1, p2,…, pm} Set of processor elements 

m The number of available processors 

Ready-List [ ] Current set of the tasks ready to be scheduled considering precedence 
constraints among tasks 

Avail(pj) The earliest time when pj is ready to execute the next task 

AFT(nk) The actual finish-time of task nk 

AST(nk) The  actual start-time of task nk 

EST(ni, pj) The earliest start-time of task ni on processor pj 

Parents(ni) Set of all the parents of ni 

Children(ni) Set of all the children of ni 

Processor(nk) The processor on which task nk is executed 

makespan The total finish time of a parallel program, or scheduling length  
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3. ANT COLONY OPTIMIZATION 
Ant colony metaheuristic is a concurrent algorithm in which a colony of artificial ants 
cooperates to find optimized solutions of a given problem. Ant algorithm was first proposed 
by Dorigo et al. as a multi-agent approach to solve traveling salesman problem (TSP) [12], 
and since then, it has been successfully applied to a wide range of difficult discrete 
optimization problems such as quadratic assignment problem, job-shop scheduling, vehicle 
routing, graph coloring, sequential ordering, network routing, to mention a few [13]. 

Leaving the nest, ants have a completely random behavior. As soon as they find a food, 
while walking from the food to the nest, they deposit on the ground a chemical substance 
called pheromone, forming in this manner a pheromone trail. Ants smell pheromone. Other 
ants are attracted by environment pheromone, and subsequently they will find the food source 
too. More pheromone is deposited, more ants are attracted, and more ants will find the food. It 
is a kind of autocatalytic behavior. In this way (by pheromone trails), ants have an indirect 
communication which are locally accessible by the ants so-called Stigmergy, a powerful tool 

(a)

n1

n4

n5

n3

n2 n6

n8

n7

n9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P1

P2

 
(b)

n1

n2

n5

n4

n3 n6

n8

n7

n9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P1

P2

 
(c)

n1

n4

n5

n3

n2 n6 n7n8 n9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P1

P2

 
(d)

n1

n4

n5

n3

n2 n6 n7n8 n9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P1

P2

 
   ( e)   

n   1   
n   4   

n   5   
n   3   
n   2   n   6   

n   8   
n   7   

n   9   

0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   
P1   
P2   

 
Fig. 2. The scheduling of the task graph of Fig. 1 achieved by the four introduced traditional heuristics.  

(a) The HLFET algorithm. (b) The MCP algorithm. (c) The DLS algorithm. (d) The ETF algorithm.  
(e) The ISH algorithm. 
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enabling them to be very fast and efficient. Pheromone is evaporated by sunshine and 
environment heat time by time destroying undesirable pheromone paths.  

If an obstacle of which one side is longer than the other side cuts the pheromone trail. At 
first, ants have random motions to circle round the obstacle. Nevertheless, the pheromone of 
the longer side is evaporated faster, and little by little, ants will convergence to the shorter 
side, and hereby, they always find the shortest path from food to the nest vice versa. 

Ant colony optimization tries to simulate this foraging behavior. In the beginning, each 
state of the problem takes a numerical variable named pheromone-trail or simply pheromone. 
Initially these variables have an identical and very small value. Ant colony optimization is an 
iterative algorithm. In each iteration, one or more ants are generated. In fact, each artificial ant 
is just a list (or Tabu-list) keeping the visited states by the ant. Ant is placed on the start state, 
and then selects next state using a probabilistic decision based on the value of pheromone 
trails of the adjacent states. Ant repeats this operation, until it reaches to the final state. In this 
time, the values of the pheromone variables of the visited states are increased based on the 
desirability of the achieved solution (depositing pheromone). Finally, all the variables are 
decreased simulating pheromone evaporation. By mean of this mechanism ants convergence 
to the more optimal solutions [13]. 

4. The Proposed Approach 
The proposed approach is a hybridization of two different ACO-based subapproaches, each 
of which has its own strategies. The first subapproach use an artificial ant colony 
optimization to find the best possible sequence of tasks in the given task-graph (to solve the 
sequencing subproblem) [10], and the second subapproach try its bests to map the sequence 
obtained from the first subapproach to the existing processors using an incremental ACO-
based method (to solve the assigning subproblem) [11]. 

A. The Sequencing Subapproach 
At first, an n×n matrix named τ is considered as pheromone variables, where n is the number 
of tasks in the given task graph. Actually, τij is the desirability of selecting task nj, when the 
immediate previous selected task to be scheduled was the task ni. All the elements of this 
matrix are initialized by a same and very small value according to the classical ACO. Then, 
the iterative ant colony algorithm is executed. Each iteration has the following steps: 

1. Generate ant (or ants). 
2. Loop for each ant (until a complete scheduling, that is the scheduling of all tasks in the 

task-graph). 
- Select the next task according to the pheromone variables and background 
knowledge of the ready-tasks using a probabilistic decision-making (roulette-wheel 
based selection). 

3. Deposit pheromone on the visited states. 
4. Daemon activities (to boost the algorithm) 
5. Evaporate pheromone. 
A flowchart of these operations with more details and an implementation in pseudo-code 

are also shown in Fig. 3 and Fig. 4, respectively. In the first stage, just a list with the length of 
n, is created as ant. At first, this list is empty, and will be completed during the next iterative 
stage. In the second stage, there is a loop for each ant; in each iteration, the generated ant 
should select a task from the ready-list using a probabilistic decision-making based on the 
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values of the pheromone variables and heuristic values (or priorities) of the ready tasks. 
Priority measurements introduced in Section II are used extensively as background 
knowledge about the problem, and efficiency of each related approach is highly correlated 
with how the approach is exploiting this background knowledge.  

Therefore, in each iteration such as t, the desirability of selecting task nj for scheduling, 
when the immediate previous selected task was the task ni is obtained using the composition 
of the local-pheromone-trail values with the local-heuristic values as in  
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Fig. 3. The flowchart of the sequencing subapproach [10]. 
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where τij(t) is the amount of pheromone on the edge (ni, nj) at time instant t, ηj is the heuristic 
value (priority measurement) of task nj, Ν(t) is the current set of ready-tasks (ready-list), and 
α and β are two parameters that control the relative weight of pheromone-trail and heuristic-

 

00: int n ← the_number_of_tasks_in_the_task_graph; 
01: int m ← the_number_of_rows and columns_of_cluster_computing_environment; 
02: int Ready-List [1..n] ← 0;    {“Current set of the tasks ready to be scheduled considering precedence constraints”} 
03: int rear ← 0;    {“The number of ready-tasks in the Ready-List [ ] at each iteration”} 
04: int Parents [1..n] ← 0;    {“The number of yet unscheduled parents for each task”} 
05: int w [1..n] ← Required execution times of the tasks 
06: float τ [1..n, 1..n] ← ε;    {“Initiating the global pheromone matrix by a uniform very small value”} 
07: float a [1..rear] ← 0;    {“The desirability of selecting each task among all the ready-tasks in the Ready-List [ ] ”} 
08: float p [1..rear] ← 0;    {“The probability of assigning each task among all the ready-tasks in the Ready-List [ ] ”} 
09: int FT [1..n] ← 0;    {“The actual finish-time for each task”} 
10: int Ant1..x [1..n];    {“Where x is the_total_number_of_the_ants”}  
11: int Antmin [1..n] ← ∞;  
12: int makespan; 
13: for k = 1 to the_total_number_of_the_ants 
14:      Antk [1..n] ← 0;    {“Initiating Antk and Parents”} 
15:     Parents [1..n] ← The total number of  parents for each task; 
16:     rear ← 0;    {“Initializing the number of ready-tasks in the Ready-List [ ]”} 
17:     for t = 1 to n    {“For all the tasks in the task-graph”} 
18:         for i = 1 to n    {“Regeneration of the Ready-list [ ]”} 
19:             if Parents [i] = 0 then  
20:                 AddQueue (ni, Ready-List [ ]);    {“Insert ni in to the rear of Ready-List [ ]”} 
21:                 rear ← rear + 1; 
22:             Endif 
23:         next i            
24:         for j = 1 to rear    {“For all the ready-tasks in the Ready-List [ ]”} 
25:             compute_the_desirability_vector (at [j]);    {“Using Eq. (9)”} 
26:             compute_the_probability_vector (pt [j]);    {“Using Eq. (10)”} 
27:         next j 
28:         r ← randomized_number (between [0, 1)); 
29:         Antk [t] ← for iteration t, select one of the ready-tasks roulette wheel based and according to the generated r and pt [1..n]; 
30:         DeleteQueue (Ready-List [ ], Antk [t]);    {“Delete the selected task from the Ready-List [ ]”} 
31:         for i = 1 to n    {“For each child of the selected task i.e. Antk [t]”} 
32:              if Antk [t]∈ Parents (ni) then Parents [i] = Parents [i] - 1; 
33:         next i 
34:     next t 

35:     --- {“Start of task-mapping using EST method, which should be replaced by the proposed ACO-based method”} --- 

36:     for i = 1 to n    {“For the task-order generated by Antk”} 
37:        AFT [i] = AST (ni) + w [i];    {“Calculating actual finish-time for each task using Eq. (1) and (2)”} 
38:      next i 
39:     makespan ← MAX (AFT [1..n]);    {“The maximum finish-time among all the tasks”} 

40:      --- {“End of task-mapping using EST method”} --- 

41:     for i = 1 to n - 1    {“Depositing pheromone on the visited states by Antk”} 
42:        update τ [Antk [i], Antk [i + 1]] based on the achieved makespan;    {“Using Eq. (11)”} 
43:      next i 
44:     if Antk < Antmin then Antmin = Antk;    {“Starting daemon activities”} 
45:     for i = 1 to n – 1    {“Depositing pheromone on the visited states in Antmin”} 
46:        update τ [Antmin [i], Antmin [i + 1]] based on the makespan of Antmin;    {“Using Eq. (12)”} 
47:     next i 
48:     for i = 1 to n 
49:         for j = 1 to n 
50: τ [i, j] ← τ [i, j] × (1 – ρ);    {“Pheromone evaporation using Eq. (13)”} 
51:     next i, j 
52: next k 
53: print Antmin; 

Fig. 4. The sequencing subapproach in pseudo-code [10]. 
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value. It should be noted that different priority measurements such as TLevel, BLevel, SLevel, 
ALAP, and NOO can be used as heuristic values, and the best one should be selected 
experimentally. Accordingly, for ant k at time instant t, the probability of selecting task nj just 
after selecting task ni is computed using (10). 

∑
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Then a random number is generated, and the next task will be selected according to the 
generated number using a roulette-wheel based selection; of course for each ready task in the 
ready-list, the higher pheromone-value and the higher priority, the bigger chance to be 
selected. Then, the selected task is appended to the ant's list, removed from the ready-list, and 
its children ready-to-execute-now will be augmented to the ready-list. These operations are 
repeated, until a complete scheduling of all the tasks is generated, which means the 
completion of the ant's list. 

In the third stage, tasks are extracted one by one from the ant's list, and mapped to the 
processors that supply the earliest-start-time. Then, the maximum finish-time is calculated as 
makespan that is also the desirability of the obtained scheduling for this ant. According to this 
desirability, the quantity of pheromone which should be deposited on the visited states by this 
ant is calculated using  
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where Lk is the overall finish-time or makespan obtained by the ant k and Tk is the executed 
tour of this ant. Accordingly, k

ijτ∆  should be deposited on every τij if and only if the (ni, nj) 
exists in the Tk (task nj has been selectedby this ant just after selecting task ni); otherwise, τij 
will remain unchanged.  

In the forth stage (daemon activity), to intensify and to avoid removing good solutions, the 
best-ant-until-now (Antmin), is selected, and some extra pheromone is deposited on the states 
visited by this ant using (12). 

min
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min ),(1 Tnnif
L jiij ∈=∆τ                      (12) 

Last by not least, using (13), pheromone variables are decreased simulating pheromone 
evaporation in the real environments. It should be taken into account to avoid premature 
convergence and stagnation because of the local minima. 

ijij τρτ )1( −= ,                                (13) 
where, ρ is the evaporation rate in the range of [0, 1) should be determined experimentally.  

B. The Assigning Subapproach 

At first, a n×m matrix named τ is considered to represent the pheromone variables, where n 
is the number of tasks in the given task graph, and m is the number of existing processors. 
Actually, τij is the desirability of assigning task ni to processor pj. All the matrix elements are 
initiated by the same and very small value as in the classical ACO. Actually, each ant is a list 
with the length n and has a novel encoding as follows. Each element in the ant’s list, such as 
ant [6] = 2, demonstrates that the task n6 will be executed on the processor p2. To clarify the 
issue, a typical ant’s list filled by the proposed approach, along with its task-order generated 
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by ants in the previous sequencing subapproach, and the corresponding scheduling on two 
processors, demonstrated by a Gantt chart, is shown in Fig. 5.  

Afterwards, the iterative ant colony algorithm is executed; each individual iteration has 
the following steps: 

1. Generate ant (or ants). 
2. Loop for each ant (until the complete scheduling of all tasks in the selected task order). 

- Assign the next task to the processors using a probabilistic decision-making based on 
the pheromone variables. 

3. Deposit pheromone on the visited states. 
4. Evaporate pheromone. 
5. Daemon activities (to improve the results) 
The flowchart of these operations with more details and an implementation in pseudo-code 

are provided in Figs. 6 and Fig. 7, respectively. In the first stage, just a list with length n is 
constructed as an ant, and filled by the task order generated by the previous scheduling 
subapproach.  

In the second stage, there is a loop for each ant. In each iteration such as t, the active ant 
assigns the next node in the selected task order into the supposed suitable processor using a 
probabilistic decision making based on the current values of the pheromone variables. The 
desirability of assigning task ni to processor pj at time instant t is obtained using  
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where τij(t) is the amount of pheromone on the edge (ni, pj) at time instant t and Ν(t) is the set 
of m existing processors. For ant k at time instant t, we need to compute the probability of 
assigning task ni to each processor such as  pj using (15). 
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Actually, )(tpk
ij for all the existing processors should be computed. Then, a random number 

in the range of [0, 1) is generated, and a processor will be selected according to the generated 
number using roulette-wheel based selection; of course for each processor, the higher the 
pheromone value, the bigger the chance to be selected. These operations are repeated until a 

 
n9 n8 n7 n6 n3 n2 n4 n5 n1 A typical task-order generated by ants in the sequencing subapproach 

 
A typical Ant’s list in the assigning subapproach 
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Fig. 5. A typical task-order generated by ants in the sequencing subapproach, and a typical ant’s list 

filled by the assigning subapproach, along with the corresponding scheduling on two processors, 
demonstrated by a Gantt chart [11]. 
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complete assigning of all the tasks happens, which means the completion of the ant's list. 
In the third stage, based on each selected pair of (ni, pj), using (3), the maximum finish-

time is calculated as makespan, which is also the desirability of the assigning obtained by this 
ant, and according to this desirability, the quantity of pheromone that should be deposited on 
the states visited by this ant is calculated using  

k
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k
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L
∈=∆  ),(1τ ,                 (16) 

where Lk is the overall finish-time or makespan obtained by ant k and Tk is the set of all (ni, pj) 
selected by this ant. Accordingly, k

ijτ∆  should be deposited on every τij if and only if (ni, pj) 
exists in Tk (task nj has been executed on the processor pj); otherwise, τij will remain 
unchanged.  

In the fourth stage, using (17), all the pheromone variables are decreased to simulate 
pheromone evaporation in real environments. Of course, this stage is very important to 
prevent premature convergence and stagnation caused by the local minima in the search space. 
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Fig. 6. The flowchart of the assigning subapproach [11]. 
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ijij τρτ )1( −= ,                                (17) 

where again ρ is the evaporation rate in the range of [0, 1) and should be determined 
experimentally. 

In the last stage, we have daemon activity (any other activities than real ant colonies such 
as local search, extra pheromone deposition, looking ahead, backtracking, and so on to boost 
the ACO). In this stage, to enhance the performance of the proposed approach and to 
especially avoid removing good solutions, the best-ant-until-now (Antmin) is selected (as the 
best solution), and some extra pheromone is deposited on the states visited by this ant using 
(18). 
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01: int n ← the_number_of_nodes_in_the_task_order; 
02: int m ← the_number_of_existing_processor_elements; 
03: int task-order [1..n] ← a selected topological task-order to assign to the processors, extracted by the sequencing subapproach; 
04: float τ [1..n, 1..m] ← ε;    {“Initiating the global pheromone matrix”} 
05: float a [1..m] ← 0;    {“The desirability of assigning a task to each of the m existing processors”} 
06: float p [1..m] ← 0;    {“The probability of assigning a task to each of the m existing processors”} 
07: int Avail [1..m] ← 0;    {“The earliest time for each processor to be available for running the next task”} 
08: int Ant1..x [1..n];    {“Where x is the_total_number_of_the_ants”} 
09: int Antmin [1..n] ← ∞; 
10: int makespan; 
11: for k = 1 to the_total_number_of_the_ants 
12:      Antk [1..n] ← 0;    {“Initiating the Antk”} 
13:     Avail [1..m] ← 0; 
14:     for t = 1 to n    {“For each task in the task graph”} 
15:         for i = 1 to m 
16:             compute_the_desirability_vector (at [i]);    {“Using Eq. (14)”} 
17:             compute_the_probability_vector (pt [i]);    {“Using Eq. (15)”} 
18:         next i 
19:         r ← randomized_number (between [0, 1));  
20:         Antk [t] ← for the task nt in Antk, select one of the m processors roulette-wheel based and according to the r and pt [m];  
21:         for j = 1 to n    {“For each parent of the task nt e.g. nj∈Parents(nt)”} 
22:              update EST (nt, Antk [t]);    {“Using Eq. (1)”} 
23:         next j 
24:         Avail [Antk [t]] ← EST (nt, Antk [t]);  
25:     next t 
26:     makespan ← MAX (Avail [1..m]); 
27:     for i = 1 to n    {“Each task–processor pair in Antk”} 
28:        update τ [i, Antk [i]] based on the makespan;    {“Using Eq. (16)”} 
29:      next i 
30:     for i = 1 to n 
31:         for j = 1 to m 
32: τ [i, j] ← τ [i, j] × (1 – ρ);    {“Pheromone evaporation using Eq. (17)”} 
33:     next i, j 
34:     if Antk < Antmin, then Antmin = Antk;    {“Starting daemon activities”} 
35:     for i = 1 to n    {“Each task–processor pair in Antmin”} 
36:        update τ [i, Antmin [i]] based on the makespan of Antmin;    {“Using Eq. (18)”} 
37:     next i 
38: next k 
39: makespan ← Antmin; 

Fig. 7. The assigning subapproach in pseudo-code [11]. 
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5. Implementation and Experimental Results 
The proposed approach was implemented on a Pentium IV (8-core 3.9 GHz i7–3770K 
processor) desktop computer with Microsoft Windows 7 (X64) platform using Microsoft 
Visual Basic 6.0 programming language. In the both subapproaches, all the initial values of 
the pheromone variables were identically set to 0.1. The evaporation rate was considered as 
0.998, and the parameters α and β were elected 1 and 0.5 respectively obtained 
experimentally. The algorithm was terminated after 2500 iterations, that is after generating 
2500 ants as explained and used in [10] and [11]. 

The implementation of the first subapproach approach in pseudo-code in Fig. 4 reveals 
that there are two nested-iterations in the sequencing subproblem (lines 13, 17, and 18) and 
(lines 13, 48, and 49) with time-complexity ∈ θ(the_total_number_of_the_ants × n2) where n 
is the number of tasks in the task graph. Since the_total_number_of_the_ants is a constant 
initiated to 2500, for the big-enough numbers of n, we can assume that the overall time-
complexity of the proposed approach for sequencing subproblem belongs to the O(n2), which 
is equal or better than the traditional preintroduced heuristic methods. Also, the time-
complexity of assigning the generated task-order to the existing m processors using EST 
method (lines 36 and 37) is O(mn2) as usual. 

On the other hand, the implementation of the second subapproach in pseudo-code in Fig. 7 
suggests that there are a main nested-iteration in the algorithm (lines 11, 14, 15, and 21); 
hence, the overall time-complexity of the proposed approach is ∈ 
θ (the_total_number_of_the_ants × (mn + n2)), where n is the number of tasks in the task 
graph, and m is the total number of the available processors. Because 
the_total_number_of_the_ants is a constant limited to 2,500, for sufficiently large numbers of 
n and m, we can assume that overall time complexity of the proposed assigning subapproach 
belongs to O(mn + n2), which is slightly better than the traditional EST method whose time 
complexity is O(mn2). That is, for large-scale samples, we expect that the actual performance 
of the proposed approach will be slightly better than the results presented in the following 
experiments. 

A. The Utilized Dataset  
Table 3 lists six task graphs of the real-world applications (and their comments) considered to 
evaluate the proposed approach. These six graphs are the standard ones in the literature, and 
utilized to evaluate a number of related works; hence, they let us to compare the proposed 
approach against its traditional counterparts. All these six graphs are used to compare the 
proposed approach with the traditional heuristics not only the list-scheduling algorithms but 
also the other scheduling methods. Also, the proposed approach will be evaluated in 
comparison with the best genetic algorithm introduced in the problem’s literature [16] using 
the last two graphs (that are G5 and G6).  

In addition, a set of 125 random task graphs are used for a rational judgment and better 
evaluation of the proposed hybrid approach. These random task graphs have different shapes 
on three following parameters. 
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• Size (n): that is the number of tasks in the task graph. Five different values were 
considered {32, 64, 128, 256, and 512}. 

• Communication-to-Computation Ratio (CCR): demonstrate how much a graph is 
communication or computation base. The weight of each node was randomly selected 
from uniform distribution with mean equal to the specified average computation cost 
that was 50 time-instance. The weight of each edge was also randomly selected from 
uniform distribution with mean equal to average-computation-cost × CCR. Three 
different values of CCR were selected {0.1, 0.5, 1.0, 5.0, and 10.0}. Selecting 0.1 
makes computation intensive task-graphs. In contrast, selecting 10.0 makes 
communication intensive ones. 

• Parallelism: the parameter which determine the average number of children for each 
node in the task-graph. Increase in this parameter makes the graph more connected. 
Three different values of parallelism were chosen {3, 5, 10, 15, and 20}. 

Because the archived makespan of these random graphs are in the wide range regarding 
their various parameters, NSL (normalized schedule length), which is a normalized measure, 
is used. It can be calculated for every given task-graph by dividing the achieved makespan to 
the lower-bound defined as the sum of weights of the nodes on the original critical path (CP) 
using 
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where CP is the set of nodes on the critical path (the longest path) of the given graph. 

B. The Expriments and Results (Sequencing Subapproach)  
The first set of experiments has been conducted to select a proper priority measurement as 
heuristic values for using in Eq. (9). Table 4 lists the results of mean of 10 times of algorithm 
execution on all the given six graphs using various priority measurements that are TLevel, 
BLevel, SLevel, ALAP, and NOO introduced in Section II. Since the algorithm using ALAP 
was statistically more successful in average NSL, this priority measurement will be used in all 
the subsequent experiments.  

Table 3. Selected Task Graphs for Evaluating the 
Proposed Approach 

Communication   
Costs Nodes Comments Graph 

Variable 9 Kwok and Ahmad [2] G1 
Variable 17 Al-Mouhamed [14] G2 

60 and 40 18 Wu and Gajski [9] G3 
Variable 16 Al-Maasarani [15] G4 
Variable 9 Fig. 1 [16] G5 

120 and 80 18 Hwang et al. [16] G6 
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The second set of experiments evaluates the proposed approach against all the five 
traditional heuristics introduced in Section II. All the six given graphs in Table 3 have been 
used. Table 5 shows the best scheduling achieved by the proposed approach along with the 
others using only two processor elements. Restricting the number of processors is a key 
experiment which reveals how much a method is capable to produce compact scheduling and 
to operate correctly in the lack of resource. As it can be seen, the proposed approach 
outperforms the other heuristics in all the cases. 

In the next set of experiments, the number of processor elements is large enough for each 
algorithm to show its best performance. This is another key experiment revealing how 
efficient an approach is in terms of existing sufficient resources.  This experiment makes it 
possible to compare the proposed approach versus a wide range of the traditional heuristics 
introduced in the literature. The results of these experiments is listed in Table 6. Again, the 
proposed approach has a better performance versus the others, and this is another strong 
evidence to verify the efficiency of the proposed sequencing subapproach. 

 

Table 5. The Best Achieved Scheduling of the Proposed Approach (ACO) and the 
Four Heuristics Using Only Two Processor Elements 

Graph HLFET ISH MCP DLS ETF ACO 

G1 23 23 19 21 21 17 

G2 44 44 43 46 44 42 

G3 410 410 420 410 400 390 

G4 63 59 62 60 60 52 
G5 30 30 29 23 23 21 

G6 540 520 550 520 520 440 

 

Table 4.  Results of Mean of 10 Times of Execution of Algorithm Using 
Different Priority Measurement as Heuristic Values 

 

Graph CPL TLevel BLevel SLevel ALAP NOO 

G1 
11 16.9 16.2 16.1 16.200 16.2 

NSL: 1.536 1.473 1.464 1.473 1.473 

G2 
28 38 38 38 38 38 

NSL: 1.357 1.357 1.357 1.357 1.357 

G3 
300 390 390 390 390 390 

NSL: 1.300 1.300 1.300 1.300 1.300 

G4 
34 47 47 47 47 47 

NSL: 1.382 1.382 1.382 1.382 1.382 

G5 
12 23.9 23.5 23.4 23.7 23.2 

NSL: 1.992 1.958 1.950 1.975 1.933 

G6 
300 470 470 459 443 470 

NSL: 1.567 1.567 1.530 1.477 1.567 

Average NSL: 1.522 1.506 1.497 1.494 1.502 
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Finally, the last two graphs (G5 and G6) evaluate the proposed subapproach compared to 
the one of the best genetic algorithms (GA) introduced for homogeneous multiprocessor task-
graph scheduling (without task duplication as our proposed method) [16]. Table 7 lists the 
achieved results of not only these two algorithms but also four other traditional ones (for a 
better justification). The results show the proposed approach as well as the genetic algorithm 
outperforms the other methods, yet the proposed approach has a better performance on the 
first graph. While, in this genetic algorithm, each generation has 100 chromosomes, and the 
maximum number of generations is 1000; that is, it achieves its best scheduling by generating 
100,000 solutions while the proposed approach examines only 2500 complete scheduling 
(2500 ants) to find its best answer. In other words, the proposed approach finds its solution so 
faster than the genetic algorithm. It is logical here because in contrast to the GA in which 
most of the operations are random, and most of the experiences are also dropped away in each 
selection phase, the ant colony optimization has an indirect communication by the pheromone 
variables, called stigmergy, so that each new decision is based on the experiences of all the 
previously active ants. Moreover, most of the efficiency of the proposed ACO-based approach 
here is for the properly utilization of background knowledge about the problem (the priority 
measurements of tasks stated and emphasized in the Section II). 

 

C. The Expriments and Results (Assignng Subapproach) 
One of the most challenging issues in utilization of the meta-heuristic approaches is their 
poor performance, encountering problems with huge dimensions, that is, when each state of 
the problem has a large number of neighborhoods. In such a condition, each decision goes 
almost scholastic, and the convergence cannot be achieved but with a large number of 
iterations. Here in the assigning subproblem, increasing the number of processors makes the 
dimensions of the problem to grow. As a result, the proposed ACO-based assigning 
subapproach will be caught in the situation in which most of the decisions are taken 
stochastically, with no convergence to a good solution. 

Table 6. THE BEST ACHIEVED RESULTS OF THE PROPOSED APPROACH (ACO) AND SOME TRADITIONAL 
HEURISTIC METHODS [2] AND [16]. 

ACO DLS MCP LAST ETF ISH HLFET DCP DSC MD EZ LC Graph 

16 19 20 19 19 19 19 16 - 17 18 19 G1 

38 41 40 43 41 38 41 38 38 38 40 39 G2 
390 390 390 470 390 390 390 390 390 420 540 420 G3 

47 47 48 - 48 48 48 - - - - - G4 

21 29 29 - 29 29 29 23 27 32 - - G5 
440 520 520 - 520 520 520 440 460 460 - - G6 

 

          Table 7. The Best Achieved Results of ACO, Genetic Algorithm [16], and Four Other 
Traditional Heuristics [10] 

Graph MCP DSC MD DCP GA [16] ACO 
G5 29 27 32 32 23 21 
G6 520 460 460 440 440 440 
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In order to tackle the issue, we revised the proposed approach to an incremental one, that 
is, we break the whole colony into m–1 different subcolonies, each of which uses a different 
number of available processors in an incremental manner, where m is the total number of 
existing processors. They sequentially explore the problem space. For example, if m = 6, then 
there will be five different subcolonies. The first subcolony explores the problem using only 
two processors to schedule the tasks. The second subcolony uses three processors to work, the 
next one uses four, and so on. All the ants’ experiences such as pheromone trails, Antmin etc. 
will be retained and sent forward to the next subcolonies. By utilizing this incremental policy, 
the ACO, if needed, tries to use fewer processors, meaning a compact scheduling that leads to 
finding better solutions with faster convergence in a number of cases. Fig. 8 shows the 
superiority of the proposed approach in comparison with the basic EST method and a more 
sophisticated CLA-based approach introduced in [17] and [18] for task mapping in 
multiprocessor environments. 

D. Final Expriments and Results (The Hybrid Approach) 
Now, the sequencing and assigning subapproaches are gathered together making a hybrid 
approach (ACO-ACO or simply ACO) to be tested as a whole system. All the final 
experiments are conducted using all the aforementioned 125 random task graphs as input 
samples. The first set of the experiments is regarding different graph sizes in order to 
investigate the impact of this parameter on the final results achieved by the proposed 
approach and the others as well. Fig. 9 illustrates the achieved results (in NSL) for the final 
hybrid proposed approach besides its traditional counterparts. Obviously, the lesser NSL, the 
better performance. The entire 125 random task graphs are used, and the results are favored 
the proposed approach. Generally speaking, the achieved NSLs grows proportionately 
according to the increase in the input graph sizes, but the relation in not linear. In average NSL, 
the performance ranking of the approaches is {ACO, ETF, MCP≈DLS, ISH, HLFET}. It 
should be note that each ranking starts with the best approach and ends with the worst one 
with respect to the given comparison metric; that is, the ACO was the best (especially with the 
large-scale inputs), ETF was a little bit worse, MCP and DLS were moderate and about 
identical (MCP was slightly better than DLS with the small-scale graphs), and the ISH and 
HLFET were the worst methods. The number of processors was large enough for each 
approach to produce its best scheduling; however, all the presented experiments were done 
again using only two processor elements, and the achieved ranking were exactly identical 
with the results, and certified the final conclusions.  

In addition, for investigating the effect of the number of processor used, another set of 
experiments is conducted.  Fig. 10 shows the diagram for the achieved NSLs of the entire 125 
random task graphs regarding utilization of the different number of processors ranging from 2 
processor up to the 64 ones. Again, the performance ranking of the approaches is {ACO, ETF, 
MCP≈DLS, ISH, HLFET}, and the proposed approach is the winner of the race versus other 
methods in all the cases. The performance difference between the proposed approach and 
their counterparts is increasing regarding the increase in the number of processor used; it is 
because the ACO-based mapper is able to dynamically accommodate itself with growing in 
the problem dimensions using the incremental policy, while other methods use EST to map 
the selected sequence on the processors which has a static method and cannot exploit the full 
potentials of increase in the number of resources (processors). 
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Fig. 11 shows the average NSLs achieved by all the experiments conducted on entire 125 
random task-graphs. As a rule, the final performance ranking is {ACO, ETF, MCP≈DLS, ISH, 
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Fig. 8. The results obtained by the proposed ACO-based assigning subapproach versus the traditional 
EST and a more sophisticated CLA-based method, for all the different task orders of each of the six 

task graphs shown in Table 2, using different numbers of processor ranging from 2 to 6: 
[11]. 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3067 

HLFET}, that is the ACO is the best (especially with the large-scale inputs), ETF is a little bit 
worse, MCP and DLS were moderate and about identical (their rankings change alternately in 
the different experiments), and the ISH and HLFET were the worst methods from the 
performance point of view. 

6. CONCLUSION  
In this paper, a new hybrid approach based on the ant colony optimization for static 
homogeneous multiprocessor task-graph scheduling problem was introduced. In the proposed 
approach, two different artificial ant colonies cooperate to make a complete solution; first 
colony finds the best possible sequence of the tasks in the given task-graph (to solve the 
sequencing subproblem), and the second assigns the sequence obtained from the first 
subapproach to the existing processors in the best way using an incremental ACO-based 
method (to solve assigning subproblem). The first set of experiments was conducted to 
specify the qualified priority measurement as heuristic values; TLevel, BLevel, SLevel, ALAP, 
and NOO were considered, and finally the results showed that ALAP is more appropriate. Six 
task-graphs from real-world programs were selected to evaluate the proposed approach 
against the traditional methods. Two sets of experiments were done to compare the proposed 
approach with traditional heuristics, one on the restricted number of processors (restricted by 
two processor elements), and another on an unbounded number of ones. The proposed method 
outperformed the others in all the cases. In addition, a comparison with one of the best 
introduced GA-based approaches in the literature shows the superiority of the proposed 
approach not only in terms of performance but also in terms of  time-complexity.  The next 
set of experiments was conducted to evaluate the ACO-based task assigner which was 
proposed to tackle the assigning subproblem. The obtained results show the superiority of the 
proposed approach in comparison with the basic EST method and a more sophisticated CLA-
based approach introduced in the literature. Eventually, the proposed approach was the winner 
of the race on a comprehensive set of 125 random task-graphs with different shape parameters 
such as size, CCR and the parallelism. All of these are of the strong evidences to demonstrate 
the capability and superiority of the proposed approach in static homogeneous multiprocessor 
task-graph scheduling.  
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Fig. 9. The achieved results (in NSL) of the proposed approach besides its traditional 

counterparts on the entire 125 random task-graphs with respect to the different graph sizes. 
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Fig. 10. The diagram of the achieved NSLs of the entire 125 random task graphs regarding the 

different number of utilized processors. 
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Fig. 11. The average NSL of all the experiments conducted on entire 125 random task-graphs. 
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