• Title/Summary/Keyword: Metagenomic

Search Result 141, Processing Time 0.023 seconds

Oral Metagenomic Analysis Techniques

  • Chung, Sung-Kyun
    • Journal of dental hygiene science
    • /
    • v.19 no.2
    • /
    • pp.86-95
    • /
    • 2019
  • The modern era of microbial genome analysis began in earnest in the 2000s with the generalization of metagenomics and gene sequencing techniques. Studying complex microbial community such as oral cavity and colon by a pure culture is considerably ineffective in terms of cost and time. Therefore, various techniques for genomic analysis have been developed to overcome the limitation of the culture method and to explore microbial communities existing in the natural environment at the gene level. Among these, DNA fingerprinting analysis and microarray chip have been used extensively; however, the most recent method of analysis is metagenomics. The study summarily examined the overview of metagenomics analysis techniques, as well as domestic and foreign studies on disease genomics and cluster analysis related to oral metagenome. The composition of oral bacteria also varies across different individuals, and it would become possible to analyze what change occurs in the human body depending on the activity of bacteria living in the oral cavity and what causality it has with diseases. Identification, isolation, metabolism, and presence of functional genes of microorganisms are being identified for correlation analysis based on oral microbial genome sequencing. For precise diagnosis and treatment of diseases based on microbiome, greater effort is needed for finding not only the causative microorganisms, but also indicators at gene level. Up to now, oral microbial studies have mostly involved metagenomics, but if metatranscriptomic, metaproteomic, and metabolomic approaches can be taken together for assessment of microbial genes and proteins that are expressed under specific conditions, then doing so can be more helpful for gaining comprehensive understanding.

Microbial Forensics: Human Identification

  • Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.292-304
    • /
    • 2018
  • Microbes is becoming increasingly forensic possibility as a consequence of advances in massive parallel sequencing (MPS) and bioinformatics. Human DNA typing is the best identifier, but it is not always possible to extract a full DNA profile namely its degradation and low copy number, and it may have limitations for identical twins. To overcome these unsatisfactory limitations, forensic potential for bacteria found in evidence could be used to differentiate individuals. Prokaryotic cells have a cell wall that better protects the bacterial nucleoid compared to the cell membrane of eukaryotic cells. Humans have an extremely diverse microbiome that may prove useful in determining human identity and may even be possible to link the microbes to the person responsible for them. Microbial composition within the human microbiome varies across individuals. Therefore, MPS of human microbiome could be used to identify biological samples from the different individuals, specifically for twins and other cases where standard DNA typing doses not provide satisfactory results due to degradation of human DNA. Microbial forensics is a new discipline combining forensic science and microbiology, which can not to replace current STR analysis methods used for human identification but to be complementary. Among the fields of microbial forensics, this paper will briefly describe information on the current status of microbiome research such as metagenomic code, salivary microbiome, pubic hair microbiome, microbes as indicators of body fluids, soils microbes as forensic indicator, and review microbial forensics as the feasibility of microbiome-based human identification.

Genome-Based Virus Taxonomy with the ICTV Database Extension

  • Kang, Shinduck;Kim, Young-Chang
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.22.1-22.5
    • /
    • 2018
  • In 1966, the International Classification of Viruses (ICNV) was established to standardize the naming of viruses. In 1975, the organization was renamed "International Committee on Taxonomy of Viruses (ICTV)," by which it is still known today. The primary virus classification provided by ICTV in 1971 was for viruses infecting vertebrates, which includes 19 genera, 2 families, and 24 unclassified groups. Presently, the 10th virus taxonomy has been published. However, the early classification of viruses was based on clinical results "in vivo" and "in vitro," as well as on the shape of the Phenotype virus. Due to the development of next-generation sequencing and the accompanying bioinformatics analysis pipelines, a reconstruction of the classification system has been proposed. At a meeting held in Boston, USA between June 9-11, 2016, there was even an in-depth discussion regarding the classification of viruses using metagenomic data. One suggested activity that arose from the meeting was that viral taxonomy should be reconstructed, based on genotype and bioinformatics analysis "in silico." This article describes our efforts to achieve this goal by construction of a web-based system and the extension of an associated database, based on ICTV taxonomy. This virus taxonomy web system was designed specifically to extend the virus taxonomy up to strain and isolation, which was then connected with the NCBI database to facilitate searches for specific viral genes; there are also links to journals provided by the EMBL RESTful API that improves accessibility for academic groups.

Molecular profiling of 18S rRNA reveals seasonal variation and diversity of diatoms community in the Han River, South Korea

  • Muhammad, Buhari Lawan;Lee, Yeon-Su;Ki, Jang-Seu
    • Journal of Species Research
    • /
    • v.10 no.1
    • /
    • pp.46-56
    • /
    • 2021
  • Diatoms have been used in examining water quality and environmental change in freshwater systems. Here, we analyzed molecular profiling of seasonal diatoms in the Han River, Korea, using the hypervariable region of 18S V1-V3 rRNA and pyrosequencing. Physicochemical data, such as temperature, DO, pH, and nutrients showed the typical seasonal pattern in a temperate region. In addition, cell counts and chlorophyll-a, were recorded at high levels in spring compared to other seasons, due to the diatom bloom. Metagenomic analysis showed a seasonal variation in the phytoplankton community composition, with diatoms as the most frequently detected in spring (83.8%) and winter (69.7%). Overall, diatom genera such as Stephanodiscus, Navicula, Cyclotella, and Discostella were the most frequent in the samples. However, a large number of unknown Thalassiosirales diatoms were found in spring (35.5%) and winter (36.3%). Our molecular profiling revealed a high number of diatom taxa compared to morphological observation. This is the first study of diatoms in the Han River using molecular approaches, providing a valuable reference for future study on diatoms-basis environmental molecular monitoring and ecology.

Isolation and Characterization of a Novel Triolein Selective Lipase from Soil Environmental Genes

  • Lim, Hee Kyung;Han, Ye-Jin;Hahm, Moon-Sun;Park, Soo Youl;Hwang, In Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.480-490
    • /
    • 2020
  • A novel lipase gene, Lip-1420, was isolated from a metagenomic library constructed from reed marsh from Mt. Jumbong in Korea, comprising 112,500 members of recombinant plasmids. The DNA sequence of Lip-1420-subclone (5,513 bp) was found to contain at least 11 ORFs according to the GenBank database. The ORF-3 gene was inserted into the pET21a plasmid containing the C-terminal 6-His tag and transformed into E. coli BL21(DE3) to express the recombinant lipase protein. Lip-1420 was purified using a fast protein liquid chromatography system. The gene was registered in GenBank (MH628529). The values of Km and Vmax were determined as 0.268 mM and 1.821 units, respectively, at 40℃ and pH 8.0, using p-nitrophenyl palmitate as the substrate. This lipase belongs to family IV taxonomically because it has conserved HGGG and GDSAG motifs in the constitutive amino acid sequence. According to the predicted structural model, the binding sites are represented by residues H78, G81, D150, S151, A152, V181, and D236. Finally, Lip-1420 showed triolein selectivity for methanolysis between triolein (18:1) and tristearin (18:0) substrates. Further study of the selective mechanism and structure-function relationship of this new lipase could be useful for more practical applications.

Changes in the Microbiome of Vaginal Fluid after Menopause in Korean Women

  • Kim, Sukyung;Seo, Hoonhee;Rahim, MD Abdur;Lee, Saebim;Kim, Yun-Sook;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1490-1500
    • /
    • 2021
  • Various microorganisms reside in the human vagina; the vaginal microbiome is closely linked to both vaginal and general health, and for this reason, microbiome studies of the vagina are an area of research. In this study, we analyzed the vaginal microbiome of women before and after menopause to further increase our understanding of the vaginal microbiome and its contribution to general health. We did a 16s rRNA gene-based metagenomic analysis on the vaginal fluids of 11 premenopausal and 19 postmenopausal women in Korea. We confirmed that the taxonomic composition was significantly different between the two groups. In postmenopausal women, species richness was significantly decreased, but species diversity was significantly increased. In particular, among the taxonomic components corresponding to all taxon ranks of the vaginal microbiome, a reduction in Lactobacillus taxa after menopause contributed the most to the difference between the two groups. In addition, we confirmed through metabolic analysis that the lactic-acid concentration was also decreased in the vaginal fluid of women after menopause. Our findings on the correlation between menopause and the microbiome could help diagnose menopause and enhance the prevention and treatment diseases related to menopause.

Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions

  • Mansour, Abdelaziz;Mannaa, Mohamed;Hewedy, Omar;Ali, Mostafa G.;Jung, Hyejung;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.432-448
    • /
    • 2022
  • Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.

Identification of Antibiotic Resistance Genes in Orofacial Abscesses Using a Metagenomics-based Approach: A Pilot Study

  • Yeeun Lee;Joo-Young Park;Youngnim Choi
    • Journal of Korean Dental Science
    • /
    • v.16 no.1
    • /
    • pp.35-46
    • /
    • 2023
  • Purpose: Culture-based methods for microbiological diagnosis and antibiotic susceptibility tests have limitations in the management of orofacial infections. We aimed to profile pus microbiota and identify antibiotic resistance genes (ARGs) using a culture-independent approach. Materials and Methods: Genomic DNA samples extracted from the pus specimens of two patients with orofacial abscesses were subjected to shotgun sequencing on the NovaSeq system. Taxonomic profiling and prediction of ARGs were performed directly from the metagenomic raw reads. Result: Taxonomic profiling revealed obligate anaerobic polymicrobial communities associated with infections of odontogenic origins: the microbial community of Patient 1 consisted of one predominant species (Prevotella oris 74.6%) with 27 minor species, while the sample from Patient 2 contained 3 abundant species (Porphyromonas endodontalis 33.0%; P. oris 31.6%; and Prevotella koreensis 13.4%) with five minor species. A total of 150 and 136 putative ARGs were predicted in the metagenome of each pus sample. The coverage of most predicted ARGs was less than 10%, and only the CfxA2 gene identified in Patient 1 was covered 100%. ARG analysis of the seven assembled genome/metagenome datasets of P. oris revealed that strain C735 carried the CfxA2 gene. Conclusion: A metagenomics-based approach is useful to profile predominantly anaerobic polymicrobial communities but needs further verification for reliable ARG detection.

Characterization of Nonaflatoxigenic Aspergillus flavus/oryzae Strains Isolated from Korean Traditional Soybean Meju

  • Sang-Cheol Jun;Yu-Kyung Kim;Kap-Hoon Han
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.408-419
    • /
    • 2022
  • Filamentous fungi that could be classified into Aspergillus flavus/oryzae were isolated from traditionally fermented meju commercially available in Korea. The samples were analyzed for aflatoxin B1 and ochratoxin A contamination by HPLC; however, no toxin was detected. In addition, fungal and bacterial metagenomic sequencing were performed to analyze the microbial distribution in the samples. The results revealed that the distribution and abundance of fungi and bacteria differed considerably depending on the production regions and fermentation conditions of the meju samples. Through morphological analysis, ITS region sequencing, and assessment of the aflatoxin-producing ability, a total of 32 A. flavus/oryzae strains were identified. PCR analysis of six regions with a high mutation frequency in the aflatoxin gene cluster (AGC) revealed a total of six types of AGC breaking point patterns. The A. flavus/oryzae strains did not exhibit the high amylase activity detected in the commercial yellow koji strain (starter mold). However, their peptidase and lipase activities were generally higher than that of the koji isolates. We verified the safety of the traditionally fermented meju samples by analyzing the AGC breaking point pattern and the enzyme activities of A. flavus/oryzae strains isolated from the samples. The isolated strains could possibly be used as starter molds for soybean fermentation.

In situ analysis of the bacterial community associated with the Korean salty fermented seafood jeotgal

  • Hyunjun Kim;Yoomin Ahn;Chulhee Park;Eungbin Kim
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.515-522
    • /
    • 2021
  • Jeotgal is a salty and fermented traditional Korean fish sauce. Unlike most other previous studies that investigated samples purchased from retail markets, this study focused on samples of jeotgal with traceable history to Yeonggwang, a timehonored fishing village in Korea. Three jeotgal samples, which were made from small yellow croakers, largehead hairtail, and miscellaneous fish, were selected based on information obtained from interviews with local craftsmen and literature reviews. Bacterial community profiles of the three jeotgal samples were investigated to identify indicator (and potentially core) bacteria for jeotgal ripening. The 16S rRNA gene-based metagenomic analysis revealed that the dominant phyla and classes, (Gammaproteobacteria, Betaproteobacteria, Bacilli, and Clostridia) of the three different jeotgal were identical, albeit with different composition ratios. Diversification was evident beginning at the order level. Interestingly, each dominant order was mainly comprised of single members even at the genus level. The dominant genera included Halomonas, Tetragenococcus, Halanaerobium, Pseudomonas, Massilia, and Lentibacillus. This observed genus-level heterogeneity suggests that there are diverse bacterial signatures in jeotgal and that these can be used as indicators for jeotgal ripening and/or as starters to increase its sensory quality and functionality.