DOI QR코드

DOI QR Code

Microbial Forensics: Human Identification

  • Eom, Yong-Bin (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University)
  • Received : 2018.10.13
  • Accepted : 2018.12.12
  • Published : 2018.12.31

Abstract

Microbes is becoming increasingly forensic possibility as a consequence of advances in massive parallel sequencing (MPS) and bioinformatics. Human DNA typing is the best identifier, but it is not always possible to extract a full DNA profile namely its degradation and low copy number, and it may have limitations for identical twins. To overcome these unsatisfactory limitations, forensic potential for bacteria found in evidence could be used to differentiate individuals. Prokaryotic cells have a cell wall that better protects the bacterial nucleoid compared to the cell membrane of eukaryotic cells. Humans have an extremely diverse microbiome that may prove useful in determining human identity and may even be possible to link the microbes to the person responsible for them. Microbial composition within the human microbiome varies across individuals. Therefore, MPS of human microbiome could be used to identify biological samples from the different individuals, specifically for twins and other cases where standard DNA typing doses not provide satisfactory results due to degradation of human DNA. Microbial forensics is a new discipline combining forensic science and microbiology, which can not to replace current STR analysis methods used for human identification but to be complementary. Among the fields of microbial forensics, this paper will briefly describe information on the current status of microbiome research such as metagenomic code, salivary microbiome, pubic hair microbiome, microbes as indicators of body fluids, soils microbes as forensic indicator, and review microbial forensics as the feasibility of microbiome-based human identification.

Keywords

References

  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005. 43: 5721-5732. https://doi.org/10.1128/JCM.43.11.5721-5732.2005
  2. Adekambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol. 2003. 41: 5699-5708. https://doi.org/10.1128/JCM.41.12.5699-5708.2003
  3. Ahn J, Yang L, Paster BJ, Ganly I, Morris L, Pei Z, Hayes RB. Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison. PLoS One. 2011. 6: e22788. https://doi.org/10.1371/journal.pone.0022788
  4. Akutsu T, Motani H, Watanabe K, Iwase H, Sakurada K. Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid. Leg Med (Tokyo). 2012. 14: 160-162. https://doi.org/10.1016/j.legalmed.2012.01.005
  5. Alan G, Sarah JP. Microbes as forensic indicators. Trop Biomed. 2012. 29: 311-330.
  6. Bai G, Gajer P, Nandy M, Ma B, Yang H, Sakamoto J, Blanchard MH, Ravel J, Brotman RM. Comparison of storage conditions for human vaginal microbiome studies. PLoS One. 2012. 7:e36934. https://doi.org/10.1371/journal.pone.0036934
  7. Benschop CC, Quaak FC, Boon ME, Sijen T, Kuiper I. Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context? Int J Legal Med. 2012. 126: 303-310. https://doi.org/10.1007/s00414-011-0660-8
  8. Bizzarro S, Loos BG, Laine ML, Crielaard W, Zaura E. Subgingival microbiome in smokers and non-smokers in periodontitis: An exploratory study using traditional targeted techniques and a next-generation sequencing. J Clin Periodontol. 2013. 40: 483-492. https://doi.org/10.1111/jcpe.12087
  9. Blaser MJ. Harnessing the power of the human microbiome. Proc Natl Acad Sci U S A. 2010. 107: 6125-6126. https://doi.org/10.1073/pnas.1002112107
  10. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, A DL, Wu F, Perez-Perez GI, Chen Y, Schweizer W, Zheng X, Contreras M, Dominguez-Bello MG, Blaser MJ. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016. 8: 343ra382.
  11. Boor KJ, Duncan ML, Price CW. Genetic and transcriptional organization of the region encoding the beta subunit of Bacillus subtilis RNA polymerase. J Biol Chem. 1995. 270: 20329-20336. https://doi.org/10.1074/jbc.270.35.20329
  12. Borgula LM, Robinson FG, Rahimi M, Chew KE, Birchmeier KR, Owens SG, Kieser JA, Tompkins GR. Isolation and genotypic comparison of oral streptococci from experimental bitemarks. J Forensic Odontostomatol. 2003. 21: 23-30.
  13. Brandwein M, Fuks G, Israel A, Al-Ashhab A, Nejman D, Straussman R, Hodak E, Harari M, Steinberg D, Bentwich Z, Shental N, Meshner S. Temporal stability of the healthy human skin microbiome following dead sea climatotherapy. Acta Derm Venereol. 2018. 98: 256-261. https://doi.org/10.2340/00015555-2769
  14. Brooke JS, Annand JW, Hammer A, Dembkowski K, Shulman ST. Investigation of bacterial pathogens on 70 frequently used environmental surfaces in a large urban U.S. university. J Environ Health. 2009. 71: 17-22.
  15. Brown KA, Elliot TR, Rogers AH, Thonard JC. The survival of oral streptococci on human skin and its implication in bitemark investigation. Forensic Sci Int. 1984. 26: 193-197. https://doi.org/10.1016/0379-0738(84)90217-2
  16. Budowle B, Allard MW, Wilson MR, Chakraborty R. Forensics and mitochondrial DNA: Applications, debates, and foundations. Annu Rev Genomics Hum Genet. 2003. 4: 119-141. https://doi.org/10.1146/annurev.genom.4.070802.110352
  17. Budowle B, Schutzer S, Breeze R, Keim P, Morse S. Microbial Forensic. Elsevier, Amsterdam, Holland. 2010. 2nd edition. 561-580.
  18. Can I, Javan GT, Pozhitkov AE, Noble PA. Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. J Microbiol Methods. 2014. 106: 1-7. https://doi.org/10.1016/j.mimet.2014.07.026
  19. Capone KA, Dowd SE, Stamatas GN, Nikolovski J. Diversity of the human skin microbiome early in life. J Invest Dermatol. 2011. 131: 2026-2032. https://doi.org/10.1038/jid.2011.168
  20. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N, Gordon JI, Knight R. Moving pictures of the human microbiome. Genome Biol. 2011. 12: R50. https://doi.org/10.1186/gb-2011-12-5-r50
  21. Casarin RC, Barbagallo A, Meulman T, Santos VR, Sallum EA, Nociti FH, Duarte PM, Casati MZ, Goncalves RB. Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. J Periodontal Res. 2013. 48: 30-36. https://doi.org/10.1111/j.1600-0765.2012.01498.x
  22. Case RJ, Boucher Y, Dahllof I, Holmstrom C, Doolittle WF, Kjelleberg S. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol. 2007. 73: 278-288. https://doi.org/10.1128/AEM.01177-06
  23. Cho I, Blaser MJ. The human microbiome: At the interface of health and disease. Nat Rev Genet. 2012. 13: 260-270. https://doi.org/10.1038/nrg3182
  24. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009. 326: 1694-1697. https://doi.org/10.1126/science.1177486
  25. Damann FE, Williams DE, Layton AC. Potential use of bacterial community succession in decaying human bone for estimating postmortem interval. J Forensic Sci. 2015. 60: 844-850. https://doi.org/10.1111/1556-4029.12744
  26. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014. 505: 559-563. https://doi.org/10.1038/nature12820
  27. Donaldson AE, Taylor MC, Cordiner SJ, Lamont IL. Using oral microbial DNA analysis to identify expirated bloodspatter. Int J Legal Med. 2010. 124: 569-576. https://doi.org/10.1007/s00414-010-0426-8
  28. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI. The long-term stability of the human gut microbiota. Science. 2013. 341: 1237439. https://doi.org/10.1126/science.1237439
  29. Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A. 2008. 105: 17994-17999. https://doi.org/10.1073/pnas.0807920105
  30. Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R. Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A. 2010. 107: 6477-6481. https://doi.org/10.1073/pnas.1000162107
  31. Fleming RI, Harbison S. The use of bacteria for the identification of vaginal secretions. Forensic Sci Int Genet. 2010. 4: 311-315. https://doi.org/10.1016/j.fsigen.2009.11.008
  32. Flores GE, Bates ST, Knights D, Lauber CL, Stombaugh J, Knight R, Fierer N. Microbial biogeography of public restroom surfaces. PLoS One. 2011. 6: e28132. https://doi.org/10.1371/journal.pone.0028132
  33. Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJ, Huttenhower C. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A. 2015. 112: E2930-2938. https://doi.org/10.1073/pnas.1423854112
  34. Fredricks DN. Microbial ecology of human skin in health and disease. J Investig Dermatol Symp Proc. 2001. 6: 167-169. https://doi.org/10.1046/j.0022-202x.2001.00039.x
  35. Gardner RM. Practical crime scene processing and investigation. 2012. CRC Press. Boca Raton, FL.
  36. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990. 345: 60-63. https://doi.org/10.1038/345060a0
  37. Greenbaum D, Sboner A, Mu XJ, Gerstein M. Genomics and privacy: Implications of the new reality of closed data for the field. PLoS Comput Biol. 2011. 7: e1002278. https://doi.org/10.1371/journal.pcbi.1002278
  38. Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A. 2012. 109: 594-599. https://doi.org/10.1073/pnas.1116053109
  39. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Program NCS, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA. Topographical and temporal diversity of the human skin microbiome. Science. 2009. 324: 1190-1192. https://doi.org/10.1126/science.1171700
  40. Gunn A. Essential forensic biology. 2018. John Wiley & Sons. Hoboken, NJ.
  41. Gunn A, Pitt SJ. Microbes as forensic indicators. Trop Biomed. 2012. 29: 311-330.
  42. Haft DH, Tovchigrechko A. High-speed microbial community profiling. Nat Methods. 2012. 9: 793-794. https://doi.org/10.1038/nmeth.2080
  43. Hale VL, Tan CL, Knight R, Amato KR. Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. J Microbiol Methods. 2015. 113: 16-26. https://doi.org/10.1016/j.mimet.2015.03.021
  44. Handelsman J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev. 2004. 68: 669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
  45. Harmon R.Microbial forensics. 2005. 382-392. Elsevier/Academic Press. Amsterdam; Boston.
  46. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012. 486: 207-214. https://doi.org/10.1038/nature11234
  47. James SH, Kish PE, Sutton TP. Principles of bloodstain pattern analysis: Theory and practice. 2005. CRC. Boca Raton, Fla.
  48. Jernigan DB, Raghunathan PL, Bell BP, Brechner R, Bresnitz EA, Butler JC, Cetron M, Cohen M, Doyle T, Fischer M, Greene C, Griffith KS, Guarner J, Hadler JL, Hayslett JA, Meyer R, Petersen LR, Phillips M, Pinner R, Popovic T, et al. Investigation of bioterrorism-related anthrax, United States, 2001: Epidemiologic findings. Emerg Infect Dis. 2002. 8: 1019-1028. https://doi.org/10.3201/eid0810.020353
  49. Jespers V, Menten J, Smet H, Poradosu S, Abdellati S, Verhelst R, Hardy L, Buve A, Crucitti T. Quantification of bacterial species of the vaginal microbiome in different groups of women, using nucleic acid amplification tests. BMC Microbiol. 2012. 12: 83. https://doi.org/10.1186/1471-2180-12-83
  50. Kort R, Caspers M, van de Graaf A, van Egmond W, Keijser B, Roeselers G. Shaping the oral microbiota through intimate kissing. Microbiome. 2014. 2: 41. https://doi.org/10.1186/2049-2618-2-41
  51. La Scola B, Bui LT, Baranton G, Khamis A, Raoult D. Partial rpoB gene sequencing for identification of Leptospira species. FEMS Microbiol Lett. 2006. 263: 142-147. https://doi.org/10.1111/j.1574-6968.2006.00377.x
  52. Lamont RF, Sobel JD, Akins RA, Hassan SS, Chaiworapongsa T, Kusanovic JP, Romero R. The vaginal microbiome: New information about genital tract flora using molecular based techniques. BJOG. 2011. 118: 533-549. https://doi.org/10.1111/j.1471-0528.2010.02840.x
  53. Lazarevic V, Manzano S, Gaia N, Girard M, Whiteson K, Hibbs J, Francois P, Gervaix A, Schrenzel J. Effects of amoxicillin treatment on the salivary microbiota in children with acute otitis media. Clin Microbiol Infect. 2013. 19: E335-342. https://doi.org/10.1111/1469-0691.12213
  54. Lazarevic V, Whiteson K, Hernandez D, Francois P, Schrenzel J. Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics. 2010. 11: 523. https://doi.org/10.1186/1471-2164-11-523
  55. Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Osteras M, Schrenzel J, Francois P. Metagenomic study of the oral microbiota by illumina high-throughput sequencing. J Microbiol Methods. 2009. 79: 266-271. https://doi.org/10.1016/j.mimet.2009.09.012
  56. Leake SL, Pagni M, Falquet L, Taroni F, Greub G. The salivary microbiome for differentiating individuals: Proof of principle. Microbes Infect. 2016. 18: 399-405. https://doi.org/10.1016/j.micinf.2016.03.011
  57. Lee SY, Eom YB. Analysis of microbial composition associtated with freshwater and seawater. Biomed Sci Let. 2016. 22: 150-159. https://doi.org/10.15616/BSL.2016.22.4.150
  58. Lemon KP, Klepac-Ceraj V, Schiffer HK, Brodie EL, Lynch SV, Kolter R. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. MBio. 2010. 1: e00129-10.
  59. Lenz EJ, Foran DR. Bacterial profiling of soil using genus-specific markers and multidimensional scaling. J Forensic Sci. 2010. 55: 1437-1442. https://doi.org/10.1111/j.1556-4029.2010.01464.x
  60. Li K, Bihan M, Yooseph S, Methe BA. Analyses of the microbial diversity across the human microbiome. PLoS One. 2012. 7:e32118. https://doi.org/10.1371/journal.pone.0032118
  61. Lin Z, Owen AB, Altman RB. Genetics. Genomic research and human subject privacy. Science. 2004. 305: 183. https://doi.org/10.1126/science.1095019
  62. Lowrance WW, Collins FS. Ethics. Identifiability in genomic research. Science. 2007. 317: 600-602. https://doi.org/10.1126/science.1147699
  63. Ma J, Coarfa C, Qin X, Bonnen PE, Milosavljevic A, Versalovic J, Aagaard K. mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities. BMC Genomics. 2014. 15: 257. https://doi.org/10.1186/1471-2164-15-257
  64. MacConaill L, Meyerson M. Adding pathogens by genomic subtraction. Nat Genet. 2008. 40: 380-382. https://doi.org/10.1038/ng0408-380
  65. Macdonald CA, Ang R, Cordiner SJ, Horswell J. Discrimination of soils at regional and local levels using bacterial and fungal T-RFLP profiling. J Forensic Sci. 2011. 56: 61-69. https://doi.org/10.1111/j.1556-4029.2010.01542.x
  66. Malik P, Singh G. Health considerations for forensic professionals: A review. Forensic Science Policy & Management. An International Journal. 2011. 2: 1-4.
  67. Mayntz-Press KA, Sims LM, Hall A, Ballantyne J. Y-STR profiling in extended interval (> or = 3 days) postcoital cervicovaginal samples. J Forensic Sci. 2008. 53: 342-348. https://doi.org/10.1111/j.1556-4029.2008.00672.x
  68. Misic AM, Davis MF, Tyldsley AS, Hodkinson BP, Tolomeo P, Hu B, Nachamkin I, Lautenbach E, Morris DO, Grice EA. The shared microbiota of humans and companion animals as evaluated from Staphylococcus carriage sites. Microbiome. 2015. 3: 2. https://doi.org/10.1186/s40168-014-0052-7
  69. Mollet C, Drancourt M, Raoult D. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol. 1997. 26: 1005-1011. https://doi.org/10.1046/j.1365-2958.1997.6382009.x
  70. Moon JH, Lee JH, Lee JY. Subgingival microbiome in smokers and non-smokers in korean chronic periodontitis patients. Mol Oral Microbiol. 2015. 30: 227-241. https://doi.org/10.1111/omi.12086
  71. Moreno LI, Mills D, Fetscher J, John-Williams K, Meadows-Jantz L, McCord B. The application of amplicon length heterogeneity PCR (LH-PCR) for monitoring the dynamics of soil microbial communities associated with cadaver decomposition. J Microbiol Methods. 2011. 84: 388-393. https://doi.org/10.1016/j.mimet.2010.11.023
  72. Moreno LI, Mills DK, Entry J, Sautter RT, Mathee K. Microbial metagenome profiling using amplicon length heterogeneitypolymerase chain reaction proves more effective than elemental analysis in discriminating soil specimens. J Forensic Sci. 2006. 51: 1315-1322. https://doi.org/10.1111/j.1556-4029.2006.00264.x
  73. Nakamura S, Maeda N, Miron IM, Yoh M, Izutsu K, Kataoka C, Honda T, Yasunaga T, Nakaya T, Kawai J, Hayashizaki Y, Horii T, Iida T. Metagenomic diagnosis of bacterial infections. Emerg Infect Dis. 2008. 14: 1784-1786. https://doi.org/10.3201/eid1411.080589
  74. Nakanishi H, Kido A, Ohmori T, Takada A, Hara M, Adachi N, Saito K. A novel method for the identification of saliva by detecting oral streptococci using PCR. Forensic Sci Int. 2009. 183: 20-23. https://doi.org/10.1016/j.forsciint.2008.10.003
  75. Nikhil GN, Venkata Mohan S, Swamy YV. Systematic approach to assess biohydrogen potential of anaerobic sludge and soil rhizobia as biocatalysts: Influence of crucial factors affecting acidogenic fermentation. Bioresour Technol. 2014. 165: 323-331. https://doi.org/10.1016/j.biortech.2014.02.097
  76. Oh J, Byrd AL, Park M, Program NCS, Kong HH, Segre JA. Temporal stability of the human skin microbiome. Cell. 2016. 165: 854-866. https://doi.org/10.1016/j.cell.2016.04.008
  77. Pallen MJ, Loman NJ. Are diagnostic and public health bacteriology ready to become branches of genomic medicine? Genome Med. 2011. 3: 53. https://doi.org/10.1186/gm269
  78. Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol. 2000. 2006. 42: 80-87. https://doi.org/10.1111/j.1600-0757.2006.00174.x
  79. Pfeiffer H, Huhne J, Ortmann C, Waterkamp K, Brinkmann B. Mitochondrial DNA typing from human axillary, pubic and head hair shafts - success rates and sequence comparisons. Int J Legal Med. 1999. 112: 287-290. https://doi.org/10.1007/s004140050251
  80. Pitt SJ, Cunningham JM. An Introduction to Biomedical Science in Clinical and Professional Practice. Wiley-Blackwell, Chichester, UK. 2009. 88-97.
  81. Power DA, Cordiner SJ, Kieser JA, Tompkins GR, Horswell J. PCR-based detection of salivary bacteria as a marker of expirated blood. Sci Justice. 2010. 50: 59-63. https://doi.org/10.1016/j.scijus.2009.04.006
  82. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010. 464: 59-65. https://doi.org/10.1038/nature08821
  83. Quaak FC, Kuiper I. Statistical data analysis of bacterial T-RFLP profiles in forensic soil comparisons. Forensic Sci Int. 2011. 210: 96-101. https://doi.org/10.1016/j.forsciint.2011.02.005
  84. Rabe LK, Winterscheid KK, Hillier SL. Association of viridans group streptococci from pregnant women with bacterial vaginosis and upper genital tract infection. J Clin Microbiol. 1988. 26: 1156-1160.
  85. Rahimi M, Heng NC, Kieser JA, Tompkins GR. Genotypic comparison of bacteria recovered from human bite marks and teeth using arbitrarily primed PCR. J Appl Microbiol. 2005. 99: 1265-1270. https://doi.org/10.1111/j.1365-2672.2005.02703.x
  86. Rajendhran J, Gunasekaran P. Microbial phylogeny and diversity: Small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res. 2011. 166: 99-110. https://doi.org/10.1016/j.micres.2010.02.003
  87. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011. 108 Suppl 1: 4680-4687. https://doi.org/10.1073/pnas.1002611107
  88. Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, Fraser CM. Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science. 2002. 296: 2028-2033. https://doi.org/10.1126/science.1071837
  89. Redondo-Lopez V, Cook RL, Sobel JD. Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial microflora. Rev Infect Dis. 1990. 12: 856-872. https://doi.org/10.1093/clinids/12.5.856
  90. Ritz K, Dawson L, Miller D.Criminal and environmental soil forensics. 2009. Springer. Berlin ; New York.
  91. Rodriguez LL, Brooks LD, Greenberg JH, Green ED. Research ethics. The complexities of genomic identifiability. Science. 2013. 339: 275-276. https://doi.org/10.1126/science.1234593
  92. Rudney JD, Larson CJ. Use of restriction fragment polymorphism analysis of rRNA genes to assign species to unknown clinical isolates of oral viridans streptococci. J Clin Microbiol. 1994. 32: 437-443.
  93. Ruffell A. Forensic pedology, forensic geology, forensic geoscience, geoforensics and soil forensics. Forensic Sci Int. 2010. 202: 9-12. https://doi.org/10.1016/j.forsciint.2010.03.044
  94. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977. 31: 107-133. https://doi.org/10.1146/annurev.mi.31.100177.000543
  95. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, Kota K, Sunyaev SR, Weinstock GM, Bork P. Genomic variation landscape of the human gut microbiome. Nature. 2013. 493: 45-50. https://doi.org/10.1038/nature11711
  96. Schmedes SE, Woerner AE, Novroski NMM, Wendt FR, King JL, Stephens KM, Budowle B. Targeted sequencing of cladespecific markers from skin microbiomes for forensic human identification. Forensic Sci Int Gent. 2018. 32: 50-61. https://doi.org/10.1016/j.fsigen.2017.10.004
  97. Schmedes SE, Sajantila A, Budowle B. Expansion of microbial forensics. J Clin Microbiol. 2016. 54: 1964-1974. https://doi.org/10.1128/JCM.00046-16
  98. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012. 9: 811-814. https://doi.org/10.1038/nmeth.2066
  99. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016. 14:e1002533. https://doi.org/10.1371/journal.pbio.1002533
  100. Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? J Microbiol Methods. 2007. 69: 470-479. https://doi.org/10.1016/j.mimet.2007.02.014
  101. Smith SM, Eng RH, Padberg FT, Jr. Survival of nosocomial pathogenic bacteria at ambient temperature. J Med. 1996. 27: 293-302.
  102. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knight R. Cohabiting family members share microbiota with one another and with their dogs. Elife. 2013. 2: e00458. https://doi.org/10.7554/eLife.00458
  103. Stahringer SS, Clemente JC, Corley RP, Hewitt J, Knights D, Walters WA, Knight R, Krauter KS. Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res. 2012. 22: 2146-2152. https://doi.org/10.1101/gr.140608.112
  104. Sweet D, Lorente JA, Valenzuela A, Lorente M, Villanueva E. PCRbased DNA typing of saliva stains recovered from human skin. J Forensic Sci. 1997. 42: 447-451.
  105. Sweet D, Pretty IA. A look at forensic dentistry--part 2: Teeth as weapons of violence--identification of bitemark perpetrators. Br Dent J. 2001. 190: 415-418. https://doi.org/10.1038/sj.bdj.4800990
  106. Tagg JR and Ragland NL. Application of BLIS typing to studies of the survival on surfaces of salivary streptococci and staphyloccci. J Appl Bacteriol. 1991. 71: 339-42. https://doi.org/10.1111/j.1365-2672.1991.tb03797.x
  107. Tibbett M, Carter DO. Soil analysis in forensic taphonomy: Chemical and biological effects of buried human remains. 2008. CRC Press. Boca Raton.
  108. Torsvik V, Goksoyr J, Daae FL. High diversity in DNA of soil bacteria. Applied and environmental microbiology. 1990. 56: 782-787.
  109. Tridico SR, Murray DC, Addison J, Kirkbride KP, Bunce M. Metagenomic analyses of bacteria on human hairs: A qualitative assessment for applications in forensic science. Investig Genet. 2014. 5: 16. https://doi.org/10.1186/s13323-014-0016-5
  110. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature. 2009. 457: 480-484. https://doi.org/10.1038/nature07540
  111. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007. 449: 804-810. https://doi.org/10.1038/nature06244
  112. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  113. Wilkins D, Leung MH, Lee PK. Microbiota fingerprints lose individually identifying features over time. Microbiome. 2017. 5: 1. https://doi.org/10.1186/s40168-016-0209-7
  114. Williams DW, Gibson G. Individualization of pubic hair bacterial communities and the effects of storage time and temperature. Forensic Sci Int Genet. 2017. 26: 12-20. https://doi.org/10.1016/j.fsigen.2016.09.006
  115. Wisplinghoff H, Reinert RR, Cornely O, Seifert H. Molecular relationships and antimicrobial susceptibilities of viridans group streptococci isolated from blood of neutropenic cancer patients. J Clin Microbiol. 1999. 37: 1876-1880.
  116. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011. 334: 105-108. https://doi.org/10.1126/science.1208344
  117. Yaegaki K, Sakata T, Ogura R, Kameyama T, Sujaku C. Influence of aging on DNase activity in human parotid saliva. J Dent Res. 1982. 61: 1222-1224. https://doi.org/10.1177/00220345820610110101
  118. Yasunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, et al. Human gut microbiome viewed across age and geography. Nature. 2012. 486: 222-227. https://doi.org/10.1038/nature11053
  119. Zala K. Forensic science. Dirty science: Soil forensics digs into new techniques. Science. 2007. 318: 386-387. https://doi.org/10.1126/science.318.5849.386
  120. Zaura E, Keijser BJ, Huse SM, Crielaard W. Defining the healthy "core microbiome" of oral microbial communities. BMC Microbiol. 2009. 9: 259. https://doi.org/10.1186/1471-2180-9-259