• Title/Summary/Keyword: Metabolomics Profile

Search Result 21, Processing Time 0.027 seconds

Metabolomics, a New Promising Technology for Toxicological Research

  • Kim, Kyu-Bong;Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2009
  • Metabolomics which deals with the biological metabolite profile produced in the body and its relation to disease state is a relatively recent research area for drug discovery and biological sciences including toxicology and pharmacology. Metabolomics, based on analytical method and multivariate analysis, has been considered a promising technology because of its advantage over other toxicogenomic and toxicoproteomic approaches. The application of metabolomics includes the development of biomarkers associated with the pathogenesis of various diseases, alternative toxicity tests, high-throughput screening (HTS), and risk assessment, allowing the simultaneous acquisition of multiple biochemical parameters in biological samples. The metabolic profile of urine, in particular, often shows changes in response to exposure to xenobiotics or disease-induced stress, because of the biological system's attempt to maintain homeostasis. In this review, we focus on the most recent advances and applications of metabolomics in toxicological research.

Practical Guide to NMR-based Metabolomics - III : NMR Spectrum Processing and Multivariate Analysis

  • Jung, Young-Sang
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.3
    • /
    • pp.46-53
    • /
    • 2018
  • NMR-based metabolomics needs various knowledge to elucidate metabolic perturbation such as NMR experiments, NMR spectrum processing, raw data processing, metabolite identification, statistical analysis, and metabolic pathway analysis regarding technical aspects. Among them, some concepts of raw data processing and multivariate analysis are not easy to understand but are important to correctly interpret metabolic profile. This article introduces NMR spectrum processing, raw data processing, and multivariate analysis.

Integration of metabolomics and transcriptomics in nanotoxicity studies

  • Shin, Tae Hwan;Lee, Da Yeon;Lee, Hyeon-Seong;Park, Hyung Jin;Jin, Moon Suk;Paik, Man-Jeong;Manavalan, Balachandran;Mo, Jung-Soon;Lee, Gwang
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Biomedical research involving nanoparticles has produced useful products with medical applications. However, the potential toxicity of nanoparticles in biofluids, cells, tissues, and organisms is a major challenge. The '-omics' analyses provide molecular profiles of multifactorial biological systems instead of focusing on a single molecule. The 'omics' approaches are necessary to evaluate nanotoxicity because classical methods for the detection of nanotoxicity have limited ability in detecting miniscule variations within a cell and do not accurately reflect the actual levels of nanotoxicity. In addition, the 'omics' approaches allow analyses of in-depth changes and compensate for the differences associated with high-throughput technologies between actual nanotoxicity and results from traditional cytotoxic evaluations. However, compared with a single omics approach, integrated omics provides precise and sensitive information by integrating complex biological conditions. Thus, these technologies contribute to extended safety evaluations of nanotoxicity and allow the accurate diagnoses of diseases far earlier than was once possible in the nanotechnology era. Here, we review a novel approach for evaluating nanotoxicity by integrating metabolomics with metabolomic profiling and transcriptomics, which is termed "metabotranscriptomics."

The difference of metabolic profile between male and female zebrafish

  • Yoon, Dahye;Choi, Jin;Choi, Hyeonsoo;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.13-16
    • /
    • 2016
  • Various experiments using zebrafish have been highlighted recently in the scientific community. Because it is possible to conduct practical experiment from various neurological research to area of genetic study or toxicity experiment. However, gender difference effects are nearly not considered. If the gender differences of zebrafish are considered it is possible to obtain more accurate data. In this study, zebrafish which have different genders were compared each other with NMR-based metabolomics. The extracts of male and female zebrafish were measured by 600 MHz NMR spectrometer. Statistical analysis and target profiling were conducted. As a result, muscle related metabolites were observed in male zebrafish and nerve related metabolites were observed in female zebrafish.

Comparison of the metabolic profile of the mycelia and fruiting bodies of artificially cultured Cordyceps militaris

  • Ha, Si Young;Jung, Ji Young;Park, Han Min;Yang, Jae-Kyung
    • Journal of Mushroom
    • /
    • v.20 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Cordyceps militaris, a well-known traditional Chinese medicine, has multiple health-promoting effects. It is used as a herbal remedy and health food in Asian countries. Cultured mycelia are often used as a substitute for natural C. militaris. In the present study, the mycelia and fruiting bodies of artificially cultured C. militaris were analyzed using a metabolomics approach. The protein and crude fat contents of the mycelia were substantially higher than those of the fruiting bodies. The top three abundant amino acids in the mycelia were proline (3.9 g/100 g), aspartic acid (2.9 g/100 g), and glutamic acid (2.7 g/100 g). The carbohydrate content was similar in the fruiting bodies and mycelia. Analysis revealed that both the fruiting bodies and mycelia are rich in phenolic compounds and exhibit antioxidant activity. Further, six metabolites were significantly different between the mycelia and fruiting bodies. The levels of Ca, glucose, Mg, and Se were higher in the mycelia than in the fruiting bodies. In contrast, mannitol and Zn were more abundant in the fruiting bodies. The current study provides a comprehensive metabolic profile of the mycelia and fruiting bodies of artificially cultured C. militaris. Such an exercise is potentially important for understanding the metabolism of C. militaris and facilitating the use of cultured mycelia as a supplement to C. militaris fruiting bodies in traditional Chinese medicine.

Metabolic Differentiation of Saccharomyces cerevisiae by Ketoconazole Treatment

  • Keum, Young Soo;Kim, Jeong-Han
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.109-112
    • /
    • 2013
  • Azole fungicides are one of the most wide-spread antifungal compounds in agriculture and pharmaceutical applications. Their major mode of action is the inhibition of ergosterol biosynthesis, giving depletion of ergosterol, precursors and abnormal steroids. However, metabolic consequences of such inhibition, other than steroidal metabolitesare not well established. Comprehensive metabolic profiles of Saccharomyces cerevisiae has been presented in this study. Wild type yeast was treated either with glucose as control or azole fungicide (ketoconazole). Both polar metabolites and lipids were analyzed with gas chromatography-mass spectrometry. Approximately over 180 metabolites were characterized, among which 18 of them were accumulated or depleted by fungicide treatment. Steroid profile gives the most prominent differences, including the accumulation of lanosterol and the depletion of zymosterol and ergosterol. However, the polar metabolite profile was also highly different in pesticide treatment. The concentration of proline and its precursors, glutamate and ornithine were markedly reduced by ketoconazole. Lysine and glycine level was also decreased while the concentrations of serine and homoserine were increased. The overall metabolic profile indicates that azole fungicide treatment induces the depletion of many polar metabolites, which are important in stress response.

Alteration of the Metabolome Profile in Endothelial Cells by Overexpression of miR-143/145

  • Wang, Wenshuo;Yang, Ye;Wang, Yiqing;Pang, Liewen;Huang, Jiechun;Tao, Hongyue;Sun, Xiaotian;Liu, Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.572-578
    • /
    • 2016
  • Communication between endothelial cells (ECs) and smooth muscle cells (SMCs) via miR-143/145 clusters is vital to vascular stability. Previous research demonstrates that miR-143/145 released from ECs can regulate SMC proliferation and migration. In addition, a recent study has found that SMCs also have the capability of manipulating EC function via miR-143/145. In the present study, we artificially increased the expression of miR-143/145 in ECs, to mimic a similar change caused by miR-143/145 released by SMCs, and applied untargeted metabolomics analysis, aimed at investigating the consequential effect of miR-143/145 overexpression. Our results showed that miR-143/145 overexpression alters the levels of metabolites involved in energy production, DNA methylation, and oxidative stress. These changed metabolites indicate that metabolic pathways, such as the SAM cycle and TCA cycle, exhibit significant differences from the norm with miR-143/145 overexpression.

1H-NMR-Based Metabolic Profiling of Cordyceps militaris to Correlate the Development Process and Anti-Cancer Effect

  • Oh, Junsang;Choi, Eunhyun;Yoon, Deok-Hyo;Park, Tae-Yong;Shrestha, Bhushan;Choi, Hyung-Kyoon;Sung, Gi-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1212-1220
    • /
    • 2019
  • The study of metabolomics in natural products using the diverse analytical instruments including GC-MS, LC-MS, and NMR is useful for the exploration of physiological and biological effects and the investigation of drug discovery and health functional foods. Cordyceps militaris has been very attractive to natural medicine as a traditional Chinese medicine, due to its various bioactive properties including anti-cancer and anti-oxidant effects. In this study, we analyzed the metabolite profile in 50% ethanol extracts of C. militaris fruit bodies from three development periods (growth period, matured period, and aging period) using $^1H-NMR$, and identified 44 metabolites, which are classified as 16 amino acids, 10 organic acids, 5 carbohydrates, 3 nucleotide derivatives, and 10 other compounds. Among the three development periods of the C. militaris fruit body, the aging period showed significantly higher levels of metabolites including cordycepin, mannitol (cordycepic acid), and ${\beta}-glucan$. Interestingly, these bioactive metabolites are positively correlated with antitumor growth effect; the extract of the aging period showed significant inhibition of HepG2 hepatic cancer cell proliferation. These results showed that the aging period during the development of C. militaris fruit bodies was more highly enriched with bioactive metabolites that are associated with cancer cell growth inhibition.

Multivariate Analysis on 1H-NMR Spectroscopy of Olive Flounder Paralichthys olivaceus Serum (1H-NMR 스펙트럼의 다변량통계분석을 통한 넙치(Paralichthys olivaceus)의 백신 반응의 지표물질 분석)

  • Cho, Ji-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.4
    • /
    • pp.367-371
    • /
    • 2012
  • To investigate the relationship between metabolic changes in $^1H$-nuclear magnetic resonance (NMR) spectra and fish vaccination, serum was collected from olive flounders treated with a formalin-killed Edwardsiella tarda vaccine and used for $^1H$-NMR metabolite profiling. Principal component analysis and partial least squares were applied to the $^1H$-NMR profile to reduce its complexity and establish class-related clusters. Relative lipid regions were distinguished in vaccinated and non-vaccinated serum. Then, the lipids were extracted from the serum and analyzed. Triolein was identified.

Ambient Mass Spectrometry in Imaging and Profiling of Single Cells: An Overview

  • Bharath Sampath Kumar
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.121-140
    • /
    • 2023
  • It is becoming more and more clear that each cell, even those of the same type, has a unique identity. This sophistication and the diversity of cell types in tissue are what are pushing the necessity for spatially distributed omics at the single-cell (SC) level. Single-cell chemical assessment, which also provides considerable insight into biological, clinical, pharmacodynamic, pathological, and toxicity studies, is crucial to the investigation of cellular omics (genomics, metabolomics, etc.). Mass spectrometry (MS) as a tool to image and profile single cells and subcellular organelles facilitates novel technical expertise for biochemical and biomedical research, such as assessing the intracellular distribution of drugs and the biochemical diversity of cellular populations. It has been illustrated that ambient mass spectrometry (AMS) is a valuable tool for the rapid, straightforward, and simple analysis of cellular and sub-cellular constituents and metabolites in their native state. This short review examines the advances in ambient mass spectrometry (AMS) and ambient mass spectrometry imaging (AMSI) on single-cell analysis that have been authored in recent years. The discussion also touches on typical single-cell AMS assessments and implementations.