Acknowledgement
This study was carried out with the support of 'R&D Program for Forest Science Technology (Project No. "2020186D10-2222-AA0261382116530003")' provided by Korea Forest Service (Korea Forestry Promotion Institute).
References
- Abeysinghe DC, Li X, Sun C, Zhang W, Zhou C, Chen K. 2007. Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem 104: 1338-1344. https://doi.org/10.1016/j.foodchem.2007.01.047
- Ahn HY, Lee JH, Kang MJ, Cha JY, Cho YS. 2012. Fibrinolytic activity and chemical properties of cordycepin-enriched Cordyceps militaris JLM 0636. J Life Sci 22: 226-231. https://doi.org/10.5352/JLS.2012.22.2.226
- AOAC. 2005. Official methods of analysis of the association of official analytical chemists (18th ed.). Arlington, VA: The Association.
- Awang MA, Daud NNNNM, Ismail NIM, Cheng PG, Ismail MF, Ramaiya SD. 2021. Antioxidant and cytotoxicity activity of Cordyceps militaris extracts against human colorectal cancer cell line. J Appl Pharm Sci 11: 105-109.
- Chakrabarti S, Patra PK. 2015. Biochemical and antioxidant responses of paddy (Oryza sativa L.) to fluoride stress. Fluoride 48: 56-61.
- Chang CH, Lin HY, Chang CY, Liu YC. 2006. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J Food Eng 77: 478-485. https://doi.org/10.1016/j.jfoodeng.2005.06.061
- Chang HL, Chao GR, Chen CC, Mau JL. 2001. Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia. Food Chem 74: 203-207. https://doi.org/10.1016/S0308-8146(01)00127-3
- Chen B, Sun Y, Luo F, Wang C. 2020. Bioactive metabolites and potential mycotoxins produced by Cordyceps fungi: A review of safety. Toxins 12: 410-422. https://doi.org/10.3390/toxins12060410
- Delgado-Torre MP, Ferreiro-Vera C, Priego-Capote F, Perez-Juan PM, Luque de Castro MD. 2012. Comparison of accelerated methods for the extraction of phenolic compounds from different vine-shoot cultivars. J Agric Food Chem 60: 3051-3060. https://doi.org/10.1021/jf205078k
- Dong CH, Yao YJ. 2008. In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis. Lebensm Wiss Technol 41: 669-677. https://doi.org/10.1016/j.lwt.2007.05.002
- Ha SY, Jung JY, Park JH, Lee DH, Choi JW, Yang JK. 2020. Effect of light-emitting diodes on cordycepin production in submerged Cordyceps militaris cultures. J Mushroom 18: 10-19. https://doi.org/10.14480/JM.2020.18.1.10
- Huang SJ, Tsai SY, Lee YL, Mau JL. 2006. Nonvolatile taste components of fruit bodies and mycelia of Cordyceps militaris. LWT - Food Science and Technology 39: 577-583. https://doi.org/10.1016/j.lwt.2005.05.002
- Jacob M, Malkawi A, Albast N, Al Bougha S, Lopata A, Dasouki M, Abdel Rahman AM. 2018. A targeted metabolomics approach for clinical diagnosis of inborn errors of metabolism. Anal Chim Acta 1025: 141-153. https://doi.org/10.1016/j.aca.2018.03.058
- Ji Y, Su A, Ma G, Tao T, Fang D, Zhao L, Hu Q. 2020. Comparison of bioactive constituents and effects on gut microbiota by in vitro fermentation between Ophicordyceps sinensis and Cordyceps militaris. J Funct Foods 68: 103901. https://doi.org/10.1016/j.jff.2020.103901
- Jin Y, Meng X, Qiu Z, Su Y, Yu P, Qu P. 2018. Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi J Biol Sci 25: 991-995. https://doi.org/10.1016/j.sjbs.2018.05.016
- Kim HK, Choi YJ, Kim KH. 2002. Functional activities of microwave-assisted extracts from Flammulina velutipes. Korean J Food Sci Technol 34: 1013-1017.
- Kontogiannatos D, Koutrotsios G, Xekalaki S, Zervakis GI. 2021. Biomass and cordycepin production by the medicinal mushroom Cordyceps militaris-A review of various aspects and recent trends towards the exploitation of a valuable fungus. J Fungi 7: 986. https://doi.org/10.3390/jof7110986
- Lee VSY, Chen CR, Liao YW, Tzen JTC, Chang CI. 2008. Structural determination and DPPH radical-scavenging activity of two acylated flavonoid tetraglycosides in oolong tea (Camellia sinensis). Chem Pharm Bull 56: 851-853. https://doi.org/10.1248/cpb.56.851
- Li X, Wang J, Zhang H, Xiao L, Lei Z, Kaul SC, Wadhwa R, Zhang Z. 2021. Low dose of fluoride in the culture medium of Cordyceps militaris promotes its growth and enhances bioactives with antioxidant and anticancer properties. J Fungi 7: 342-355. https://doi.org/10.3390/jof7050342
- Liu CH, Huang MT, Huang PC. 1995. Sources of triglyceride accumulation in liver of rats fed a cholesterol-supplemented diet. Lipids 30: 527-531. https://doi.org/10.1007/BF02537027
- Liu X, Huang K, Zhou J. 2014. Composition and antitumor activity of the mycelia and fruiting bodies of Cordyceps militaris. J Food Nutr Res 2: 74-79. https://doi.org/10.12691/jfnr-2-2-3
- Liu XC, Zhu ZY, Tang YL, Wang MF, Wang Z, Liu AJ, Zhang YM. 2016. Structural properties of polysaccharides from cultivated fruit bodies and mycelium of Cordyceps militaris. Carbohydr Polym 142: 63-72. https://doi.org/10.1016/j.carbpol.2016.01.040
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
- Oh J, Yoon DH, Shrestha B, Choi HK, Sung GH. 2019. Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies. J Microbiol 57: 54-63. https://doi.org/10.1007/s12275-019-8486-z
- Quy TN, Xuan TD. 2019. Xanthine oxidase inhibitory potential, antioxidant and antibacterial activities of Cordyceps militaris (L.) Link fruiting body. Medicines 6: 20-32. https://doi.org/10.3390/medicines6010020
- Raethong N, Wang H, Nielsen J, Vongsangnak W. 2020. Optimizing cultivation of Cordyceps militaris for fast growth and cordycepin overproduction using rational design of synthetic media. Comput Struct Biotechnol J 18: 1-8. https://doi.org/10.1016/j.csbj.2019.11.003
- Sasipriya G, Siddhuraju P. 2012. Effect of different processing methods on antioxidant activity of underutilized legumes, Entada scandens seed kernel and Canavalia gladiata seeds. Food Chem Toxicol 50: 2864-2872. https://doi.org/10.1016/j.fct.2012.05.048
- Tang J, Qian Z, Wu H. 2018. Enhancing cordycepin production in liquid static cultivation of Cordyceps militaris by adding vegetable oils as the secondary carbon source. Bioresour Technol 268: 60-67. https://doi.org/10.1016/j.biortech.2018.07.128
- In-on A, Thananusak R, Ruengjitchatchawalya M, Vongsangnak W, Laomettachit T. 2022. Construction of light-responsive gene regulatory network for growth, development, and secondary metabolite production in Cordyceps militaris. Biology 11: 71-87. https://doi.org/10.3390/biology11010071
- Yan JK, Wang WQ, Wu JY. 2014. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review. J Funct Foods 6: 33-47. https://doi.org/10.1016/j.jff.2013.11.024
- Yang T, Guo M, Yang H, Guo S, Dong C. 2016. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Appl Microbiol Biotechnol 100: 743-755. https://doi.org/10.1007/s00253-015-7047-6
- Yu R, Yang W, Song L, Yan C, Zhang Z, Zhao Y. 2007. Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris. Carbohydr Polym 70: 430-436. https://doi.org/10.1016/j.carbpol.2007.05.005
- Zhang XM, Tang DX, Li QQ, Wang YB, Xu ZH, Li WJ, Yu H. 2021. Complex microbial communities inhabiting natural Cordyceps militaris and the habitat soil and their predicted functions. Antonie van Leeuwenhoek 114: 465-477. https://doi.org/10.1007/s10482-021-01534-6