• 제목/요약/키워드: Meta-Genetic Algorithm

검색결과 77건 처리시간 0.025초

병렬 유전 알고리즘 기반 meta-유전 알고리즘을 이용한 교차율과 돌연변이율의 최적화 (Optimization of Crossover and Mutation Rate Using PGA-Based meta-GA)

  • 김문환;박진배;이연우;주영훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.375-378
    • /
    • 2002
  • In this paper we propose parallel GA to optimize mutation rate and crossover rate using server-client model. The performance of GA depend on the good choice of crossover and mutation rates. Although many researcher has been study about the good choice, it is still unsolved problem. proposed GA optimize crossover and mutation rates trough evolving subpopulation. In virtue of the server-client model, these parameters can be evolved rapidly with relatively low-grade

대기시간 최소화 문제를 위한 메타 휴리스틱 해법의 개발 (Developing Meta heuristics for the minimum latency problem)

  • 양병학
    • 대한안전경영과학회지
    • /
    • 제11권4호
    • /
    • pp.213-220
    • /
    • 2009
  • The minimum latency problem, also known as the traveling repairman problem and the deliveryman problem is to minimize the overall waiting times of customers, not to minimize their routing times. In this research, a genetic algorithm, a clonal selection algorithm and a population management genetic algorithm are introduced. The computational experiment shows the objective value of the clonal selection algorithm is the best among the three algorithms and the calculating time of the population management genetic algorithm is the best among the three algorithms.

Meta-Heuristic Algorithms를 이용한 확률분포의 매개변수 추정 (Parameters Estimation of Probability Distributions Using Meta-Heuristic Algorithms)

  • 윤석민;이태삼;강명국;정창삼
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.464-464
    • /
    • 2012
  • 수문분야에 있어서 빈도해석의 목적은 특정 재현기간에 대한 발생 가능한 수문량의 규모를 파악하는데 있으며, 빈도해석의 정확도는 적합한 확률분포모형의 선택과 매개변수 추정방법에 의존하게 된다. 일반적으로 각 확률분포모형의 특성을 대표하는 매개변수를 추정하기 위해서는 모멘트 방법, 확률가중 모멘트 방법, 최대우도법 등을 이용하게 된다. 모멘트 방법에 의한 매개변수 추정은 해를 구하기 위한 과정이 단순한 반면, 비대칭형의 왜곡된 분포를 갖는 자료들에 대해서는 부정확한 결과를 나타내게 된다. 확률가중 모멘트 방법은 표본의 크기가 작거나 왜곡된 자료일 경우에도 비교적 안정적인 결과를 제공하는 반면, 확률 가중치가 정수로만 제한되는 단점을 갖고 있다. 그리고 대수 우도함수를 이용하여 매개변수를 추정하게 되는 최우도법은 가장 효율적인 매개변수 추정치를 얻을 수 있는 것으로 알려져 있으나, 비선형 연립방정식으로 표현되는 해를 구하기 위해서는 Newton-Raphson 방법을 사용하는 등 절차가 복잡하며, 때로는 수렴이 되지 않아 해룰 구하지 못하는 경우가 발생되게 된다. 이에 반해, 최근의 Genetic Algorithm, Ant Colony Optimization 및 Simulated Annealing과 같은 Meta-Heuristic Algorithm들은 복잡합 공학적 최적화 문제 있어서 효율적인 대안으로 주목받고 있으며, Hassanzadeh et al.(2011)에 의해 수문학적 빈도해석을 위한 매개변수 추정에 있어서도 그 적용성이 검증된바 있다. 본 연구의 목적은 연 최대강수 자료의 빈도해석에 적용되는 확률분포모형들의 매개변수 추정을 위해 Meta-Heuristic Algorithm을 적용하고자 함에 있다. 따라서 본 연구에서는 매개변수 추정을 위한 방법으로 Genetic Algorithm 및 Harmony Search를 적용하였고, 그 결과를 최우도법에 의한 결과와 비교하였다. GEV 분포를 이용하여 Simulation Test를 수행한 결과 Genetic Algorithm을 이용하여 추정된 매개변수들은 최우도법에 의한 결과들과 비교적 유사한 분포를 나타내었으나 과도한 계산시간이 요구되는 것으로 나타났다. 하지만 Harmony Search를 이용하여 추정된 매개변수들은 최우도법에 의한 결과들과 유사한 분포를 나타내었을 뿐만 아니라 계산시간 또한 매우 짧은 것으로 나타났다. 또한 국내 74개소의 강우관측소 자료와 Gamma, Log-normal, GEV 및 Gumbel 분포를 이용한 실증연구에 있어서도 Harmony Search를 이용한 매개변수 추정은 효율적인 매개 변수 추정치를 제공하는 것으로 나타났다.

  • PDF

Setup 시간을 고려한 Flow Shop Scheduling (Scheduling of a Flow Shop with Setup Time)

  • 강무진;김병기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.797-802
    • /
    • 2000
  • Flow shop scheduling problem involves processing several jobs on common facilities where a setup time Is incurred whenever there is a switch of jobs. Practical aspect of scheduling focuses on finding a near-optimum solution within a feasible time rather than striving for a global optimum. In this paper, a hybrid meta-heuristic method called tabu-genetic algorithm(TGA) is suggested, which combines the genetic algorithm(GA) with tabu list. The experiment shows that the proposed TGA can reach the optimum solution with higher probability than GA or SA(Simulated Annealing) in less time than TS(Tabu Search). It also shows that consideration of setup time becomes more important as the ratio of setup time to processing time increases.

  • PDF

크리깅 메타모델과 유전자 알고리즘을 이용한 초고압 가스차단기의 형상 최적 설계 (Shape Optimization of High Voltage Gas Circuit Breaker Using Kriging-Based Model And Genetic Algorithm)

  • 곽창섭;김홍규;차정원
    • 전기학회논문지
    • /
    • 제62권2호
    • /
    • pp.177-183
    • /
    • 2013
  • We describe a new method for selecting design variables for shape optimization of high-voltage gas circuit breaker using a Kriging meta-model and a genetic algorithm. Firstly we sample balance design variables using the Latin Hypercube Sampling. Secondly, we build meta-model using the Kriging. Thirdly, we search the optimal design variables using a genetic algorithm. To obtain the more exact design variable, we adopt the boundary shifting method. With the proposed optimization frame, we can get the improved interruption design and reduce the design time by 80%. We applied the proposed method to the optimization of multivariate optimization problems as well as shape optimization of a high - voltage gas circuit breaker.

Niche Meta 유전 알고리즘을 이용한 2자유도 이동 로봇의 퍼지 제어기 설계 (Fuzzy Controller Design of 2 D.O.F of Wheeled Mobile Robot using Niche Meta Genetic Algorithm)

  • 김성회;김기열
    • 정보학연구
    • /
    • 제5권4호
    • /
    • pp.73-79
    • /
    • 2002
  • 본 논문에서는 퍼지 제어기의 설계를 위한 다중 돌연변이 연산자를 갖는 Niche Meta 유전 알고리즘을 제안한다. 제안된 알고리즘에서 유전자는 유전 알고리즘에 사용되는 교배율이나 돌연변이율과 같은 구조 매개변수와 퍼지 제어기의 입$cdot$출력 소속함수를 나타내는 매개변수로 구성된다. 제안된 알고리즘은 부개체군들에 대해 퍼지 제어기의 소속함수의 매개변수를 최적화시키는 지역적 탐색을 수행하면서 전체 개체군에 대해서 최적의 구조 매개변수에 대한 전역적인 탐색을 수행한다. 다중 돌연변이 연산자는 지역적 진화의 결과에 따라 진화에 가장 적합한 돌연변이 방법으로 선택된다. 제안된 알고리즘의 효율성을 입증하기 위해 2 자유도 구륜 이동 로봇에 대한 모의 실험을 수행한다.

  • PDF

설비배치계획에서의 개미 알고리듬 응용 (Ant Algorithm Based Facility Layout Planning)

  • 이성열;이월선
    • 한국산업정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.142-148
    • /
    • 2008
  • Facility Layout Planning is concerned with how to arrange facilities necessary for production in a given space. Its objective is often to minimize the total sum of all material flows multiplied by the distance among facilities. FLP belongs to NP complete problem; i.e., the number of possible layout solutions increases with the increase of the number of facilities. Thus, meta heuristics such as Genetic Algorithm (GA) and Simulated Annealing have been investigated to solve the FLP problems. However, one of the biggest problems which lie in the existing meta heuristics including GA is hard to find an appropriate combinations of parameters which result in optimal solutions for the specific problem. The Ant System algorithm with elitist and ranking strategies is used to solve the FLP problem as an another good alternative. Experimental results show that the AS algorithm is able to produce the same level of solution quality with less sensitive parameters selection comparing to the ones obtained by applying other existing meta heuristic algorithms.

  • PDF

액적 충돌 현상기반 최적알고리즘의 비교 (Meta-Heuristic Algorithm Comparison for Droplet Impingements)

  • 문주현
    • 한국분무공학회지
    • /
    • 제28권4호
    • /
    • pp.161-168
    • /
    • 2023
  • Droplet impingement on solid surfaces is pivotal for a range of spray and heat transfer processes. This study aims to optimize the cooling performance of single droplet impingement on heated textured surfaces. We focused on maximizing the cooling effectiveness or the total contact area at the droplet maximum spread. For efficient estimation of the optimal values of the unknown variables, we introduced an enhanced Genetic Algorithm (GA) and Particle swarm optimization algorithm (PSO). These novel algorithms incorporate its developed theoretical backgrounds to compare proper optimized results. The comparison, considering the peak values of objective functions, computation durations, and the count of penalty particles, confirmed that PSO method offers swifter and more efficient searches, compared to GA algorithm, contributing finding the effective way for the spray and droplet impingement process.

Gamma ray interactions based optimization algorithm: Application in radioisotope identification

  • Ghalehasadi, Aydin;Ashrafi, Saleh;Alizadeh, Davood;Meric, Niyazi
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3772-3783
    • /
    • 2021
  • This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.

유전자 알고리즘을 이용한 시간제약 차량경로문제 (Vehicle Routing Problems with Time Window Constraints by Using Genetic Algorithm)

  • 전건욱;이윤희
    • 산업경영시스템학회지
    • /
    • 제29권4호
    • /
    • pp.75-82
    • /
    • 2006
  • The main objective of this study is to find out the shortest path of the vehicle routing problem with time window constraints by using both genetic algorithm and heuristic. Hard time constraints were considered to the vehicle routing problem in this suggested algorithm. Four different heuristic rules, modification process for initial and infeasible solution, 2-opt process, and lag exchange process, were applied to the genetic algorithm in order to both minimize the total distance and improve the loading rate at the same time. This genetic algorithm is compared with the results of existing problems suggested by Solomon. We found better solutions concerning vehicle loading rate and number of vehicles in R-type Solomon's examples R103 and R106.