• 제목/요약/키워드: Messy genetic algorithm

검색결과 14건 처리시간 0.019초

fmGA를 이용한 하수관거정비 최적화 모델 (Optimization Model for Sewer Rehabilitation Using Fast Messy Genetic Algorithm)

  • 류재나;기범준;박규홍;이차돈
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.145-154
    • /
    • 2004
  • A long-term sewer rehabilitation project consuming an enormous budget needs to be conducted systematically using an optimization skill. The optimal budgeting and ordering of priority for sewer rehabilitation projects are very important with respect to the effectiveness of investment. In this study, the sewer rehabilitation optimization model using fast-messy genetic algorithm is developed to suggest a schedule for optimal sewer rehabilitation in a subcatchment area by modifying the existing GOOSER$^{(R)}$ model having been developed using simple genetic algorithm. The sewer rehabilitation optimization model using fast-messy genetic algorithm can improve the speed converging to the optimal solution relative to GOOSER$^{(R)}$, suggesting that it is more advantageous to the sewer rehabilitation in a larger-scale subcatchment area than GOOSER.

Fuzzy Logic Controller Design via Genetic Algorithm

  • Kwon, Oh-Kook;Wook Chang;Joo, Young-Hoon;Park, Jin-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.612-618
    • /
    • 1998
  • The success of a fuzzy logic control system solving any given problem critically depends on the architecture of th network. Various attempts have been made in optimizing its structure its structure using genetic algorithm automated designs. In a regular genetic algorithm , a difficulty exists which lies in the encoding of the problem by highly fit gene combinations of a fixed-length. This paper presents a new approach to structurally optimized designs of a fuzzy model. We use a messy genetic algorithm, whose main characteristics is the variable length of chromosomes. A messy genetic algorithms used to obtain structurally optimized fuzzy models. Structural optimization is regarded important before neural network based learning is switched into. We have applied the method to the exampled of a cart-pole balancing.

  • PDF

바이러스-메시 유전 알고리즘에 의한 퍼지 모델링 (The Fuzzy Modeling by Virus-messy Genetic Algorithm)

  • 최종일;이연우;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.157-160
    • /
    • 2000
  • This paper deals with the fuzzy modeling for the complex and uncertain system in which conventional and mathematical models may fail to give satisfactory results. mGA(messy Genetic Algorithm) has more effective and adaptive structure than sGA with respect to using changeable-length string and VEGA(Virus Evolution Genetic) Algorithm) can search the global and local optimal solution simultaneously with reverse transcription operator and transduction operator. Therefore in this paper, the optimal fuzzy model is obtained using Virus-messy Genetic Algorithm(Virus-mGA). In this method local information is exchanged in population so that population may sustain genetic divergence. To prove the surperioty of the proposed approach, we provide the numerical example.

  • PDF

메시 유전 알고리듬을 이용한 퍼지 규칙 동정 (Fuzzy Rule Identification Using Messy Genetic Algorithm)

  • 권오국;장욱;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.252-256
    • /
    • 1997
  • The success of a fuzzy neural network(FNN) control system solving any given problem critically depends on the architecture of the network. Various attempts have been made in optimizing its structure using genetic algorithm automated designs. This paper presents a new approach to structurally optimized designs of FNN models. A messy genetic algorithm is used to obtain structurally optimized FNN models. Structural optimization is regarded important before neural networks based learning is switched into. We have applied the method to the problem of a numerical approximation

  • PDF

mGA를 이용한 축구 로봇의 속도 제어 (Speed Control of Soccer Robot Using messy Genetic Algorithm)

  • 김정찬;주영훈;박현빈
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.590-595
    • /
    • 2003
  • 본 논문에서는 mGA를 이용해 축구로봇의 속도를 제어하는 새로운 기법을 제안하였다 축구 로봇의 목표를 최소 시간 내에 도착하기 위해 속도제어에 크게 영향을 미치는 거리 오차와 각도 오차 등의 비율을 나타내는 각종 파라미터가 포함되어 있는 제어 함수를 제안하였다. 이들 파라미터들을 mGA을 이용하여 최적의 값들을 탐색함으로써 변화되는 환경 속에서도 로봇의 목적지에 최소 시간 내에 이동하도록 속도제어 전략을 제안한다.

메시 유전알고리듬을 이용한 퍼지모델링 방법 (Fuzzy Modeling Schemes Using Messy Genetic Algorithms)

  • 권오국;장욱;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.519-521
    • /
    • 1998
  • Fuzzy inference systems have found many applications in recent years. The fuzzy inference system design procedure is related to an expert or a skilled human operator in many fields. Various attempts have been made in optimizing its structure using genetic algorithm automated designs. This paper presents a new approach to structurally optimized designs of FNN models. The messy genetic algorithm is used to obtain structurally optimized fuzzy neural network models. Structural optimization is regarded important before neural network based learning is switched into. We have applied the method to the problem of a time series estimation.

  • PDF

유전알고리즘을 이용한 지능형 로봇의 주행 제어 (The Navigation Control for Intelligent Robot Using Genetic Algorithms)

  • 주영훈;조상균
    • 한국지능시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.451-456
    • /
    • 2005
  • 본 논문에서는 유전 알고리즘의 한 방법인 mGA를 이용하여 지능형 로봇의 주행제어 방법을 제안한다. 지능형 로봇의 주행에 필요한 퍼지 제어기의 설계는 전문가적 지식에 많이 의존한다. 이러한 전문가의 경험에 의해 설정된 퍼지 제어기의 여러 구성 요소들의 매개 변수 값들이 최적의 값이라는 보장이 없다. 상기 문제를 해결하기 위해 본 논문에서는 퍼지 제어 기의 구성 요소인 퍼지 규칙의 수와 멤버쉽 함수의 매개 변수들을 mGA를 이용하여 동정하는 방법을 제안한다. 제안된 방법에 의해 동정된 매개 변수들의 정확성과 효율성을 평가하기 위하여 지능형 로봇의 벽면 주행에 대한 모의실험을 수행한다.

Fuzzy Model Identification Using VmGA

  • Park, Jong-Il;Oh, Jae-Heung;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.53-58
    • /
    • 2002
  • In the construction of successful fuzzy models for nonlinear systems, the identification of an optimal fuzzy model system is an important and difficult problem. Traditionally, sGA(simple genetic algorithm) has been used to identify structures and parameters of fuzzy model because it has the ability to search the optimal solution somewhat globally. But SGA optimization process may be the reason of the premature local convergence when the appearance of the superior individual at the population evolution. Therefore, in this paper we propose a new method that can yield a successful fuzzy model using VmGA(virus messy genetic algorithms). The proposed method not only can be the countermeasure of premature convergence through the local information changed in population, but also has more effective and adaptive structure with respect to using changeable length string. In order to demonstrate the superiority and generality of the fuzzy modeling using VmGA, we finally applied the proposed fuzzy modeling methodof a complex nonlinear system.

mGA를 이용한 축구로봇의 속도 제어 (Speed Control of Soccer Robot using messy Genetic Algorithm)

  • 김정찬;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2233-2235
    • /
    • 2003
  • 본 논문에서는 mGA를 이용해 축구로봇의 속도를 제어하는 새로운 방법을 제안하였다. 축구 로봇의 목표를 최소 시간내에 도착하기 위해 속도제어에 크게 영향을 미치는 거리 오차와 각도 오차 등의 비율를 나타내는 각종 파라미터가 포함되어 있는 제어 함수를 제시하고, 이들 파라미터들을 mGA을 이용하여 최적의 값들을 탐색함으로써 변화되는 환경 속에서도 로봇의 목적지에 최소 시간내에 이동하도록 속도제어 전략을 제안한다.

  • PDF

바이러스 메시 유전 알고리즘에 의한 퍼지 모델링 (The Fuzzy Modeling by Virus-messy Genetic Algorithm)

  • 주영훈;최종일;박직배
    • 한국지능시스템학회논문지
    • /
    • 제11권2호
    • /
    • pp.95-100
    • /
    • 2001
  • 비선형 시스템의 성공적인 퍼지 모델을 구성하기 위한 최적의 퍼지 추론 시스템의 동정은 중요하고도 어려운 문제이다. 전통적으로 유전 알고리즘은 어느 정도의 전역 최적해를 찾을 수 있기 때문에 퍼지 모델의 구조와 파라미터를 동정하는데 사용되어 왔다. 그러나, 유전 알고리즘은 개체군 진화 시 우수한 개체의 출현은 지역수렴의 원인이 된다. 따라서, 본 논문에서는 바이러스 메시 유전알고리즘을 이용한 효과적인 퍼지 모델링 방법을 제안한다. 제안된 방법은 지역 정보가 개체군 내에서 교환됨으로써 지역 수렴의 대인아 될 수 있을 뿐 아니라, 가변길이 스트링을 사용함으로써 좀더 효과적이고 적응적인 구조를 가질 수 있다. 또한 본 논문에서 제안한 방법의 우수성과 일반성을 증명하기 위해 복잡한 비선형 시스템과 가스로의 퍼지모델링에 적용하였다.

  • PDF