• Title/Summary/Keyword: Message Field Description

Search Result 8, Processing Time 0.026 seconds

A Novel Architecture of UPnP Bridge for Non-IP devices (Non-IP 장치 제어를 위한 새로운 UPnP 브리지 구조)

  • Kang, Jeong-Seok;Choi, Yong-Soon;Kim, Seong-Hoon;Lee, Kwang-Koog;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.442-444
    • /
    • 2007
  • This paper presents an architecture of UPnP Bridge that allows controlling Non-iP devices from UPnP control point, without modification to Non-IP device or UPnP control point implementations. UPnP devices must provide SSDP discovery, SOAP control and GENA event processes. To represent Non-IP devices to UPnP devices, UPnP Bridge provides these functionalities on behalf of Non-IP devices. We provides two method to interoperability between UPnP and Non-IP devices, Message Field Description, Non-UPnP Proxy devices. And solution to integrate heterogeneous networking standards(RS232C, CAN, IEEE1394, USB) is provided.

  • PDF

General MFD Structure for UPnP Bridge (UPnP 브리지를 위한 범용 MFD 구조)

  • Choi, Yong-Soon;Kang, Jung-Seok;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.289-290
    • /
    • 2007
  • UPnP Bridge supporting diverse network interface has to meet standard requirements in order to be connected with legacy devices. It is able to provide or bridge a service description and device description according to a specification because IEEE1394 and USB have this standard requirements. But it is difficult to know whether it RS232C supports only serial communication and packet transfer. It need a document for the standard definition of communication protocol on UPnP device having such interface. By doing so, this document can understand device and packet type. This paper defines MFD(Message Field Description) and makes UPnP message converter. So it will be base to standardize supporting variable legacy device.

  • PDF

An Architecture of UPnP Bridge for Non-lP Devices with Heterogeneous Interfaces (다양한 Non-lP 장치를 위한 UPnP 브리지 구조)

  • Kang, Jeong-Seok;Choi, Yong-Soon;Park, Hong-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.779-789
    • /
    • 2007
  • This paper presents an architecture of UPnP Bridge for interconnecting Non-lP devices with heterogeneous network interfaces to UPnP devices on UPnP networks. The proposed UPnP Bridge provides a Virtual UPnP device that performs generic UPnP Device's functionalities on behalf of Non-lP device. This paper defines 3 types of descriptions, Device Description, Message Field Description, and Extended UPnP Service Description in order to reduce the amount of effort required to connect a non-lP device with a new interface or message format to UPnP network. By these three types of descriptions and Message conversion module, developers for Non-lP devices can easily connect the devices to UPnP network without additional programming. So UPnP control point controls Non-lP devices as generic UPnP device. Some experiments validate the proposed architecture, which are performed on a test bed consisting of UPnP network the proposed bridge, and non-lP devices with CAN and RS232 interfaces.

FPGA Implementation of LSB-Based Steganography

  • Vinh, Quang Do;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.151-159
    • /
    • 2017
  • Steganography, which is popular as an image processing technology, is the art of using digital images to hide a secret message in such a way that its existence can only be discovered by the sender and the intended receiver. This technique has the advantage of concealing secret information in a cover medium without drawing attention to it, unlike cryptography, which tries to convert data into something messy or meaningless. In this paper, we propose two efficient least significant bit (LSB)-based steganography techniques for designing an image-based steganography system on chip using hardware description language (HDL). The proposed techniques manipulate the LSB plane of the cover image to embed text inside it. The output of these algorithms is a stego-image which has the same quality as that of the original image. We also implement the proposed techniques using the Altera field programmable gate array (FPGA) and Quartus II design software.

Design and Implementation of CAN IP using FPGA (FPGA를 이용한 CAN 통신 IP 설계 및 구현)

  • Son, Yeseul;Park, Jungkeun;Kang, Taesam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.671-677
    • /
    • 2016
  • A Controller Area Network (CAN) is a serial communication protocol that is highly reliable and efficient in many aspects, such as wiring cost and space, system flexibility, and network maintenance. Therefore, it is chosen for the communication protocol between a single chip controller based on Field Programmable Gate Array (FPGA) and peripheral devices. In this paper, the design and implementation of CAN IP, which is written in VHSIC Hardware Description Language (VHDL), is presented. The implemented CAN IP is based on the CAN 2.0A specification. The CAN IP consists of three processes: clock generator, bit timing, and bit streaming. The clock generator process generates a time quantum clock. The bit timing process does synchronization, receives bits from the Rx port, and transmits bits to the Tx port. The bit streaming process generates a bit stream, which is made from a message received from a micro controller subsystem, receives a bit stream from the bit timing process, and handles errors depending on the state of the CAN node and CAN message fields. The implemented CAN IP is synthesized and downloaded into SmartFusion FPGA. Simulations using ModelSim and chip test results show that the implemented CAN IP conforms to the CAN 2.0A specification.

Model-Based Intelligent Framework Interface for UAV Autonomous Mission (무인기 자율임무를 위한 모델 기반 지능형 프레임워크 인터페이스)

  • Son Gun Joon;Lee Jaeho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.3
    • /
    • pp.111-121
    • /
    • 2024
  • Recently, thanks to the development of artificial intelligence technologies such as image recognition, research on unmanned aerial vehicles is being actively conducted. In particular, related research is increasing in the field of military drones, which costs a lot to foster professional pilot personnel, and one of them is the study of an intelligent framework for autonomous mission performance of reconnaissance drones. In this study, we tried to design an intelligent framework for unmanned aerial vehicles using the methodology of designing an intelligent framework for service robots. For the autonomous mission performance of unmanned aerial vehicles, the intelligent framework and unmanned aerial vehicle module must be smoothly linked. However, it was difficult to provide interworking for drones using periodic message protocols with model-based interfaces of intelligent frameworks for existing service robots. First, the message model lacked expressive power for periodic message protocols, followed by the problem that interoperability of asynchronous data exchange methods of periodic message protocols and intelligent frameworks was not provided. To solve this problem, this paper proposes a message model extension method for message periodic description to secure the model's expressive power for the periodic message model, and proposes periodic and asynchronous data exchange methods using the extended model to provide interoperability of different data exchange methods.

Automatic real-time system of the global 3-D MHD model: Description and initial tests

  • Park, Geun-Seok;Choi, Seong-Hwan;Cho, Il-Hyun;Baek, Ji-Hye;Park, Kyung-Sun;Cho, Kyung-Suk;Choe, Gwang-Son
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.26.2-26.2
    • /
    • 2009
  • The Solar and Space Weather Research Group (SOS) in Korea Astronomy and Space Science Institute (KASI) is constructing the Space Weather Prediction Center since 2007. As a part of the project, we are developing automatic real-time system of the global 3-D magnetohydrodynamics (MHD) simulation. The MHD simulation model of earth's magnetosphere is designed as modified leap-frog scheme by T. Ogino, and it was parallelized by using message passing interface (MPI). Our work focuses on the automatic processing about simulation of 3-D MHD model and visualization of the simulation results. We used PC cluster to compute, and virtual reality modeling language (VRML) file format to visualize the MHD simulation. The system can show the variation of earth's magnetosphere by the solar wind in quasi real time. For data assimilation we used four parameters from ACE data; density, pressure, velocity of solar wind, and z component of interplanetary magnetic field (IMF). In this paper, we performed some initial tests and made a animation. The automatic real-time system will be valuable tool to understand the configuration of the solar-terrestrial environment for space weather research.

  • PDF

ROUTE/DASH-SRD based Point Cloud Content Region Division Transfer and Density Scalability Supporting Method (포인트 클라우드 콘텐츠의 밀도 스케일러빌리티를 지원하는 ROUTE/DASH-SRD 기반 영역 분할 전송 방법)

  • Kim, Doohwan;Park, Seonghwan;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.849-858
    • /
    • 2019
  • Recent developments in computer graphics technology and image processing technology have increased interest in point cloud technology for inputting real space and object information as three-dimensional data. In particular, point cloud technology can accurately provide spatial information, and has attracted a great deal of interest in the field of autonomous vehicles and AR (Augmented Reality)/VR (Virtual Reality). However, in order to provide users with 3D point cloud contents that require more data than conventional 2D images, various technology developments are required. In order to solve these problems, an international standardization organization, MPEG(Moving Picture Experts Group), is in the process of discussing efficient compression and transmission schemes. In this paper, we provide a region division transfer method of 3D point cloud content through extension of existing MPEG-DASH (Dynamic Adaptive Streaming over HTTP)-SRD (Spatial Relationship Description) technology, quality parameters are further defined in the signaling message so that the quality parameters can be selectively determined according to the user's request. We also design a verification platform for ROUTE (Real Time Object Delivery Over Unidirectional Transport)/DASH based heterogeneous network environment and use the results to validate the proposed technology.