• 제목/요약/키워드: Mesoporous catalysts

검색결과 77건 처리시간 0.021초

N2O 분해를 위한 전이금속이 도핑된 메조포러스 실리카 촉매의 합성과 표면 특성에 관한 연구 (Synthesis and Surface Characterization of Transition Metal Doped Mesoporous Silica Catalysts for Decomposition of N2O)

  • 이갑두;노민수;박상원
    • 한국환경과학회지
    • /
    • 제21권7호
    • /
    • pp.787-795
    • /
    • 2012
  • The purpose of this study is to synthesize transition metal doped mesoporous silica catalyst and to characterize its surface in an attempt to decomposition of $N_2O$. Transition metal used to surface modification were Ru, Pd, Cu and Fe concentration was adjusted to 0.05 M. The prepared mesoporous silica catalysts were characterized by X-ray diffraction, BET surface area, BJH pore size, Scanning Electron Microscopy and X-ray fluorescence. The results of XRD for mesoporous silica catalysts showed typical the hexagonal pore system. BET results showed the mesoporous silica catalysts to have a surface area of 537~973 $m^2/g$ and pore size of 2~4 nm. The well-dispersed particle of mesoporous silica catalysts were observed by SEM, the presence and quantity of transition metal loading to mesoporous surface were detected by XRF. The $N_2O$ decomposition efficiency on mesoporous silica catalysts were as follow: Ru>Pd>Cu>Fe. The results suggest that transition metal doped mesoporous silica is effective catalyst for decomposition of $N_2O$.

Effect of Iron Species in Mesoporous Fe-N/C Catalysts with Different Shapes on Activity Towards Oxygen Reduction Reaction

  • Kang, Taehong;Lee, Jiyeon;Kim, Jong Gyeong;Pak, Chanho
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.137-145
    • /
    • 2021
  • Among the non-precious metal catalysts, iron-nitrogen doped carbon (Fe-N/C) catalysts have been recognized as the most promising candidates for an alternative to Pt-based catalysts for the oxygen reduction reaction (ORR) under alkaline and acidic conditions. In this study, the nano replication method using mesoporous silica, which features tunable primary particle sizes and shape, is employed to prepare the mesoporous Fe-N/C catalysts with different shapes. Platelet SBA-15, irregular KIT-6, and spherical silica particle (SSP) were selected as a template to generate three different kinds of shapes of the mesoporous Fe-N/C catalyst. Physicochemical properties of mesoporous Fe-N/C catalysts are characterized by using small-angle X-ray diffraction, nitrogen adsorption-desorption isotherms, and scanning electron microscopy images. According to the electrochemical evaluation, there is no morphological preference of mesoporous Fe-N/C catalysts toward the ORR activity with half-cell configuration under alkaline electrolyte. By implementing X-ray photoelectron spectroscopy analysis of Fe and N atoms in the mesoporous Fe-N/C catalysts, it is possible to verify that the activity towards ORR highly depends on the portions of "Fe-N" species in the catalysts regardless of the shape of catalysts. It was suggested that active site distribution in the Fe-N/C is one important factor towards ORR activity.

이온성 액체가 담지된 메조포로스 실리카 촉매를 이용한 Tricyclopentadiene 합성 (Synthesis of Tricyclopentadiene Using Ionic Liquid Supported Mesoporous Silica Catalysts)

  • 김수정;전종기;한정식;임진형
    • 공업화학
    • /
    • 제27권2호
    • /
    • pp.190-194
    • /
    • 2016
  • Tricyclopentadiene (TCPD)는 차세대 고밀도에너지 연료인 tetrahydrotricyclopentadiene의 전구체로서 중요한 화합물이다. 본 연구에서는 이온성 액체가 담지된 메조포로스 실리카 촉매를 이용하여 dicyclopentadiene 소중합 반응을 통한 TCPD 합성에 관한 연구를 수행하였다. 나노기공의 크기가 다른 대표적인 메조포로스 실리카인 MCM-41과 SBA-15에 이온성 액체(IL)를 함침법을 이용하여 담지하고 소중합 촉매를 제조하였다. 음이온 전구체로 copper(I) chloride (CuCl) 또는 iron(III) chloride ($FeCl_3$), 양이온 전구체로 triethylamine hydrochloride (TEAC) 또는 1-butyl-3-methylimidazolium chloride(BMIC)를 사용하여 4가지 종류의 IL을 메조포로스 실리카에 담지하였다. 이온성 액체가 담지된 메조기공의 실리카를 사용하였을 때 이온성 액체만 사용하였을 때보다 TCPD 수율과 dicyclopentadiene (DCPD)의 전환율 측면에서 우수하였다. 특히, MCM-41에 루이스 산도가 낮은 CuCl계 이온성 액체를 담지할 때 TCPD 수율이 가장 높았다.

Catalytic Upgrading of Geodae-Uksae 1 over Mesoporous MCM-48 Catalysts

  • Jeon, Ki-Joon;Jin, Sung Ho;Park, Sung Hoon;Jeon, Jong-Ki;Jung, Sang-Chul;Ryu, Changkook;Park, Young-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.1951-1955
    • /
    • 2014
  • Catalytic pyrolysis of Geodae-Uksae 1, a kind of miscanthus found in Korea, was carried out over mesoporous MCM-48 catalysts. For rapid product analysis and catalyst evaluation, pyrolysis-gas chromatography/mass spectrometry was used. X-ray diffraction, nitrogen sorption, pyridine adsorbed Fourier transform infrared, and NH3 temperature programmed desorption were utilized to analyze the properties of the catalysts. Compared to non-catalytic reaction, catalytic upgrading over mesoporous Al-MCM-48 catalysts produced a higher-quality bio-oil with a high stability and low oxygen content. Al-MCM-48 exhibited higher deoxygenation ability than Si-MCM-48 due to its higher acidity.

Bifunctional Fe-SBA-15-SO3H Mesoporous Catalysts with Different Si/Fe Molar Ratios: Synthesis, Characterization and Catalytic Activity

  • Erdem, Sezer;Erdem, Beyhan;Oksuzoglu, Ramis Mustafa;Citak, Alime
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1481-1486
    • /
    • 2013
  • Bifunctional Fe-SBA-15-$SO_3H$ mesoporous materials with different Si/Fe molar ratios (3, 5, and 7) have been synthesized via a simple direct hydrothermal method and characterized by XRD, $N_2$-adsorption/desorption, TG/DTG and FT-IR techniques, and used as solid acid catalysts in the esterification of lactic acid with methanol. XRD and $N_2$ sorption characterizations show successful iron doping within the mesoporous channels of SBA-15-$SO_3H$. The FT-IR and TG/DTG characterizations also reveal the presence of iron. With the incorporation of Fe ions into the SBA-15-$SO_3H$, the acid sites substantially increased because of the self-separated acidity of the hydrolysis of $Fe^{3+}$ solutions. However, in the Si/Fe = 3 molar ratio, the catalytic conversion decreased which is caused by the reduced cooperation effect between the acid pairs due to the weakened hydrogen bonds and collapse of the pore structure. This further suggests that the mesoporous structure decreases with the decrease in Si/Fe ratio.

Cathodic Electrochemical Deposition of Highly Ordered Mesoporous Manganese Oxide for Supercapacitor Electrodes via Surfactant Templating

  • Lim, Dongwook;Park, Taesoon;Choi, Yeji;Oh, Euntaek;Shim, Snag Eun;Baeck, Sung-Hyeon
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.148-154
    • /
    • 2020
  • Highly ordered mesoporous manganese oxide films were electrodeposited onto indium tin oxide coated (ITO) glass using sodium dodecyl sulfate (SDS) and ethylene glycol (EG) which were used as a templating agent and stabilizer for the formation of micelle, respectively. The manganese oxide films synthesized with surfactant templating exhibited a highly mesoporous structure with a long-range order, which was confirmed by SAXRD and TEM analysis. The unique porous structure offers a more favorable diffusion pathway for electrolyte transportation and excellent ionic conductivity. Among the synthesized samples, Mn2O3-SDS+EG exhibited the best electrochemical performance for a supercapacitor in the wide range of scan rate, which was attributed to the well-developed mesoporous structure. The Mn2O3 prepared with SDS and EG displayed an outstanding capacitance of 72.04 F g-1, which outperform non-porous Mn2O3 (32.13 F g-1) at a scan rate of 10 mV s-1.

탄소지지체의 화학적 변형에 따른 연료전지용 백금-루테늄 촉매의 전기화학적 활성의 영향 (Effect of Chemical Modification of Carbon Supports on Electrochemical Activities for Pt-Ru Catalysts of Fuel Cells)

  • 김병주;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.94.1-94.1
    • /
    • 2011
  • In this work, ordered mesoporous carbons (OMCs) were prepared by the conventional templating method using mesoporous silica (SBA-15) for Pt-Ru catalyst supports in fuel cells. The influence of surface modification on carbon supports on the electrochemical activities of Pt-Ru/OMCs was investigated with different pH. The neutral-treated OMCs (N-OMCs), base-treated OMCs (B-OMCs), and acid-treated OMCs (A-OMCs) were prepared by treating OMCs with 2 M $C_6H_6$, 2 M KOH, and 2 M $H_3PO_4$, respectively. The surface characteristic of the carbon supports were determined X-ray photoelectron spectroscopy (XPS). The electrochemical activities of the Pt-Ru catalysts had been enhanced when the OMCs supports were treated by basic or neutral agents, while the electrochemical activities had been decayed for the A-OMCs supported Pt-Ru.

  • PDF

Pretreatment Effect on CO Oxidation over Highly Ordered Mesoporous Silver Catalyst

  • Shon, Jeong-Kuk;Park, Jung-Nam;Hwang, Seong-Hee;Jin, Mingshi;Moon, Ki-Young;Boo, Jin-Hyo;Han, Tae-Hee;Kim, Ji-Man
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.415-418
    • /
    • 2010
  • Highly ordered mesoporous silver material was successfully synthesized from a mesoporous silica template (KIT-6) with 3-D channel structure using the nano-replication method. The effects of $H_2$ or $O_2$ pretreatments on the catalytic performance of the mesoporous silver were investigated using a temperature programmed CO oxidation technique in a fixed bed reactor. The mesoporous silver material that was pretreated with $H_2$ exhibited an excellent catalytic activity compared to the as-prepared and $O_2$-pretreated catalysts. Moreover, this present mesoporous silver material showed good catalytic stability. For the CO oxidation, the apparent activation energy of the $H_2$-pretreated mesoporous silver catalyst was $61{\pm}0.5\;kJ\;mol^{-1}$, which was also much lower than the as-prepared ($132{\pm}1.5\;kJ\;mol^{-1}$) and $O_2$-pretreated ($124{\pm}1.4\;kJ\;mol^{-1}$) catalysts.

메탄화 반응을 위한 중형 기공성 실리카 물질에 담지된 니켈 촉매의 제조와 특성 분석 (Preparation and Characterization of Ni Catalyst Supported on Mesoporous Silica for Methanation)

  • 이종협;김우영;강미영;조원준
    • 한국가스학회지
    • /
    • 제13권5호
    • /
    • pp.26-32
    • /
    • 2009
  • Ni 금속을 바탕으로 중형 기공성 실리카와 상용 실리카를 담체로 사용하여 메탄화 반응용 촉매를 제조, 특성 비교를 수행하였다. TPR, XRD 분석 결과, 중형 기공성 실리카에 담지된 Ni촉매는 상용 실리카에 담지된 Ni 촉매에 비하여 보다 작은 크기로 Ni 금속이 분산되었으며 보다 강한 금속-담체 상호 결합력을 가짐을 확인하였다. 이와 같은 특성으로 인하여 중형 기공성 실리카를 사용한 촉매와 상용 실리카를 사용한 촉매의 수율은 각각 65%, 58%로 중형 기공성 실리카를 사용한 촉매가 메탄화 반응에서 보다 높은 활성을 보였으며, 반응 후에 회수된 촉매의 특성 분석 결과로부터 중형 기공성 실리카를 사용한 촉매가 구조의 붕괴, 금속 소결 현상으로 인하여 촉매의 비활성화가 진행된 상용 실리카 촉매에 비하여 상대적으로 안정하다는 것을 확인하였다.

  • PDF

팔라듐 나노입자가 담지된 메조포러스 실리카의 제조와 이를 이용한 Suzuki Cross-Coupling 반응의 적용연구 (Synthesis of Palladium Nanoparticles Encapsulated in Phosphine Ligand-Grafted Mesoporous Silicas and Their Application to Suzuki Cross-Coupling Reaction)

  • 김상욱;주진
    • 청정기술
    • /
    • 제17권1호
    • /
    • pp.13-18
    • /
    • 2011
  • 포스핀(phosphine) 리간드(ligand)가 도포된 메조포러스 실리카(mesoporous silicas)에 팔라듐 나노입자를 도입하여 새로운 팔라듐(Pd) 불균일 촉매(heterogeneous catalyst)를 제조하였다. 제조된 촉매는 브롬화벤젠 유도체(bromobenzene derivatives)들의 Suzuki cross-coupling 반응에 대하여 뛰어난 촉매활성을 나타내었고 촉매를 두 번째 사용하였을 때는 수율이 감소하였다.