• Title/Summary/Keyword: Mesoporous Silica Materials

Search Result 67, Processing Time 0.022 seconds

Fabrication and Characterization of CdSe/ZnS-QDs Incorporated Microbeads for Ultra-sensitive Sensor Applications (양자점을 이용한 고감도 마이크로 비드의 제조 및 특성)

  • Lee, Dong-Sup;Lee, Jong-Chul;Lee, Jong-Heun;Koo, Eun-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.189-194
    • /
    • 2010
  • Compared with organic fluorophores, semiconductor quantum dots (QDs) have the better properties such as photostability, narrow emission spectra coupled to tunable photoluminescent emissions and exceptional resistance to both photo bleaching and chemical degradation. In this work, CdSe/ZnS QDs nanobeads were prepared by the incorporation of CdSe/ZnS QDs with mesoporous silica to use as the optical probe for detecting toxic and bio- materials with high sensitivity, CdSe/ZnS core/shell QDs were synthesized from the precursors such as CdO and zinc stearate with the lower toxicity than pyrotic precursors. The QD-nanobeads were characterized by transmission electron microscopy, FL microscopy, UV-Vis and PL spectroscopy, respectively.

Study on CMPO (Carbamoylphosphate) derivative functionalized ordered mesoporous silicates for selective removal of lanthanide (희토류 원소의 분리를 위한 표면 개질 된 메조 다공성 실리케이트의 개발에 관한 연구)

  • Kwon, Bob Jin;Jung, Hyun;Kim, Jong Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.291-298
    • /
    • 2012
  • Carbamoylphosphate (CMPO) [CMPO analogue; 2-(diphenylphosphoryl)-N-(3-(triethoxysilyl)propyl)acetamide]silane, as a functional self-assembled molecules, grafted mesoporous silicates were prepared by simple hydrolysis and condensation reaction. Pore sized tailored mesoporous silicates such as MCM-41, SBA-15, or amorphous silica nanoparticles were adopted as host materials. The surface area of ordered mesoporous silicates was ranged from 680 $m^2/g$ to 1310 $m^2/g$ with different pore diameters that estimated to be ca. 2.3~9.1 nm by BJH method. Among the OMMs host materials, SBA-15(II) has higher loading ratio (~35 wt%) of CMPO derivative than other OMMs. Accessibility to CMPO silane functional groups in the surface of mesoporous silicas was studied by lanthanide ions sorption experiments. All of the CMPO modified OMMs favors the smaller Eu(III) and Nd(III) cations than La(III) for relative larger ionic radius.

Synthesis of Hollow Carbon Microspheres with Mesoporous Shell and Vacant Core Structure and Their Electrochemical Properties (중간세공을 갖는 껍질로 구성된 속이 빈 마이크로 탄소입자의 합성 및 이들의 전기화학적 특성)

  • Lee, Yae Won;Yang, Hee Chun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.449-454
    • /
    • 2016
  • In this study, highly monodispersed porous carbon microcapsules with a hollow core were synthesized using polystyrene (PS) beads as a hard template. The surface of PS was first modified with polyvinylpyrollidone (PVP) for the easy attachment of inorganic silica sol. After coating the surface of PVP modified PS microspheres with SBA-16 sol, the carbon microcapsules with a hollow macroporous core were fabricated through reverse replication method by filling carbon sources in the mesopores of silica mold. The hollow carbons having a mesoporous shell structure and narrow particle size distribution could be obtained after the carbonization of carbon source and the dissolution of silica mold by HF solution. The mesoporous characteristics and electrochemical properties of hollow carbon microcapsules were characterized by XRD, SEM, TEM, $N_2$ adsorption/desorption analysis and cyclic voltammetry. They showed the high electric conductivity and capability for use as efficient electro-materials such as a supercapacitor.

Immobilization Metallocene Inside Surface-functionalized Nanopore of Micelle-Templated Silica and its Ethylene Polymerization (표면 기능화된 Micelle-Templated Silica 나노세공 내 메탈로센 담지 및 에틸렌 중합)

  • Lee, Jeong-Suk;Yim, Jin-Heong;Ko, Young-Soo
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.111-116
    • /
    • 2012
  • A functionalization of mesoporous materials with organosilane was carried out via a post-synthesis grafting method and $(n-BuCp)_2ZrCl_2$/methylaluminoxane (MAO) as subsequently immobilized on the functionalized mesoporous materials for ethylene polymerization. Organosilanes having amine, cyano or imidazoline group such as $N$-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS), 4-(triethoxysilyl)butyronitrile (1NCy), 1-(3-triethoxysilylpropyl)-2-imidazoline (2NIm) were used for the surface functionalization of mesoporous materials. In the SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ catalyst preparation, the amount of MAO in feed increased with an decrease in the Zr content of the supported catalyst, and Al content in the supported catalyst increased. The ethylene homopolymerization activity of SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ dramatically increased as the amount of MAO in feed increased. Furthermore, when the immobilization time was 6 hrs, SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ showed the highest activity. The activities of supported 2NS-, 1NCy-, 2NIm-functionalized catalysts decreased in the following order, SBA-15/2NS/ > SBA-15/2NIm/ > SBA-15/1NCy/$(n-BuCp)_2ZrCl_2$. 2NS and 2NIm which have two amine groups per silane molecule were shown to interact with $(n-BuCp)_2ZrCl_2$ strongly compared to 1NCy which has one amine group. Thus, the activities increased with an increase in the nitrogen and the Zr content of the supported catalysts.

Preparation and Characterization of Mesoporous ${\gamma}-Al_2O_3$ Prepared from Kaolinite (카올린나이트로부터 중기공성 ${\gamma}-Al_2O_3$의 제조 및 특성)

  • Lee, Gwang-Hyeon;Go, Hyeong-Sin;Kim, Yun-Seop
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.845-852
    • /
    • 2000
  • Mesoporous ${\gamma}-Al_2O_3$ has been prepared by selective leaching of silica from calcined domestic kaolinite. From XRD and TG-DTA data, it was found that the microstructure of a spinel phase, consisting of ${\gamma}-Al_2O_3$ containing a small mount of amorphous silica, was obtained by calcining kaolinite samples at around $1000^{\circ}C$ for 24h. Porous ${\gamma}-Al_2O_3$ was prepared by selectively dissolving the amorphous silica in KOH solutions of 1~4M at temperatures of $25~90^{\circ}C$ for leaching time of 0.5~4h. In the case of the ${\gamma}-Al_2O_3$ obtained upon KOH treatment of 4M at $90^{\circ}C$ for 1h, it showed a very narrow unimodal pore size distribution, and also formed much mesopore at a diameter of around $40~80{\AA}$. The specific surface area was $250\textrm{m}^2/g$ and the total pore volume was $0.654\textrm{cm}^3/g$.

  • PDF

Mesoporous Silica Catalysts Modified with Sulfonic Acid and Their Catalytic Activity on Ring Opening Polymerization of Octamethylcyclotetrasiloxane (술폰산으로 표면개질된 메조기공 실리카 촉매의 제조 및 Octamethylcyclotetrasiloxane 개환중합에서의 촉매 활성)

  • Lee, Yeonsong;Hwang, Ha Soo;Lee, Jiyoung;Lo, Nu Hoang Tien;Nguyen, Tien Giang;Lee, Donghyun;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.383-389
    • /
    • 2020
  • Mesoporous silica solid catalysts modified with sulfonic acid were prepared for cationic ring-opening polymerization of octamethylcyclotetrasiloxane (D4). Two sets of MCM-41 (1.7 and 2.8 nm) and SBA-15 (8.1 and 15.9 nm) with different pore sizes were used as catalyst supports. The surface of silica materials was modified with (3-mercaptopropyl)trimethoxysilane by silylation reaction and oxidized to sulfonic acid. The structures of the prepared catalysts were examined by X-ray diffraction and nitrogen adsorption-desorption. The pore size, specific surface area, and pore volume of the modified solid catalysts decreased slightly. In addition, the modification of the sulfonic acid on the silica surface was confirmed by using infrared spectroscopy and nuclear magnetic resonance spectroscopy. To observe the effect of the particle size on the catalytic activity, it was observed with a scanning electron microscope. The catalysts were used to synthesize PDMS through a ring-opening polymerization of D4, and the conversion and polymerization rate of the polymerization reaction depended on the pore size, specific surface area, particle size, and particle agglomeration of the catalysts. In order for the polymerization rate, the catalyst prepared with SBA-15 of 8.1 nm pore size had the fastest reaction rate and showed the best catalytic activity.

Hydrogen Storage Using Pd Doped Mesoporous Carbon Materials (팔라듐이 담지된 중형 기공성 탄소 재료를 이용한 수소 저장)

  • Kim, Wooyoung;Kim, Dongmin;Hong, Youngteak;Kang, Taegyun;Yi, Jongheop
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.107-111
    • /
    • 2006
  • Two types of mesoporous carbons, CMK-3 and CMK-5, were prepared using mesoporous silica as a removable template, and their hydrogen storage capacities were evaluated. For the purpose of comparison, MWCNT (multi-walled carbon nanotubes) was selected and the adsorption of hydrogen was measured. The amount of hydrogen adsorbed on carbon materials was found to be closely related to the surface areas of carbon samples: The higher the surface area of the carbon material, the larger amount of hydrogen was adsorbed. The hydrogen storage capacity increased in the order of CMK-5 > CMK-3 > MWCNT. In addition, hydrogen storage capacity was greatly enhanced by the Pd-doping onto CMK-5. When the metallic Pd was doped on the carbon material, the adsorption amount of hydrogen via a hydrogen spill-over mechanism was crucial to the hydrogen storage capacity of Pd-doped CMK-5.

  • PDF

Adsorption of ammonia using mesoporous alumina prepared by a templating method

  • Yeom, Changjoo;Kim, Younghun
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.401-406
    • /
    • 2017
  • Ammonia, $NH_3$, is a key chemical widely used in chemical industries and a toxic pollutant that impacts human health. Thus, there is a need for the development of effective adsorbents with high uptake capacities to adsorb $NH_3$. An adsorbent with a high surface area and a small pore size is generally preferred in order to have a high capacity for the removal of $NH_3$. The use inorganic nanoporous materials as gas adsorbents has increased substantially and emerged as an alternative to zeolite and activated carbon. Herein, mesoporous alumina (MA) was prepared and used as an $NH_3$ adsorbent. MA showed good pore properties such as a uniform pore size and interlinked pore system, when compared to commercial adsorbents (activated carbon, zeolite, and silica powder). MA has free hydroxyl groups, serving as useful adsorption sites for $NH_3$. In an adsorption isotherm test, MA exhibited 4.7-6.5 times higher uptake capacities for $NH_3$ than commercial adsorbents. Although the larger surface areas of adsorbents are important features of ideal adsorbents, a regular and interlinked adsorbent pore system was found to be a more crucial factor to adsorb $NH_3$.

Synthesis of Periodic Mesoporous Organosilica by Microwave Heating

  • Yoon, Sang-Soon;Son, Won-Jin;Biswas, Kalidas;Ahn, Wha-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.609-614
    • /
    • 2008
  • A periodic mesoporous organosilica material was synthesized by microwave heating (PMO-M) using 1,2-bis(trimethoxysilyl)ethane as a precursor in a cationic surfactant solution, and textural properties were compared with those of the product produced by conventional convection heating (PMO-C). These synthesized materials were characterized using XRD, TEM/SEM, N2 adsorption isotherm, 29Si and 13C NMR, and TGA, which confirmed their good structural orders and clear arrangements of uniform 3D-channels. Synthesis time was reduced from 21 h in PMO-C to 2-4 h in PMO-M. PMO-M was made of spherical particles of 1.5-2.2 m m size, whereas PMO-C was made of decaoctahedron-shaped particles of ca. 8.0 m m size. Effect of synthesis temperature, time, and heating mode on the PMO particle morphology was examined. The particle size of PMO-M could be controlled by changing the heating rate by adjusting microwave power level. PMO-M demonstrated improved separation of selected organic compounds compared to PMO-C in a reversed phase HPLC experiment. Ti-grafted PMO-M also resulted in higher conversion in liquid phase cyclohexene epoxidation than by Ti-PMO-C.

Preferential Oxidation of CO over Cu/Ti-SBA-15 Catalysts (Cu 담지 Ti-SBA-15 촉매의 선택적 CO 산화 반응)

  • Kim, Joon-Woo;Park, Jae-Woo;Lee, Jong-Soo;Choi, Han-Seul;Choung, Suk-Jin
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.432-437
    • /
    • 2013
  • The CO preferential oxidation reaction (PROX) has been done using Cu catalytic active species supported on some of mesoporous silica materials which can facilitate the diffusion of the reactants in order to prevent the poisoning of anode active materials by CO molecules during driving polymer electrolyte fuel cells (PEMFC) in this study. As a result when SBA-15 with large pore used as a support showed excellent CO oxidation activity, especially the activity increased in proportion to the amount of supported Cu. Ti components which was inserted to increase the degree of dispersion of Cu, contributed to improving the performance for CO oxidation at low-temperature. The degree of dispersion of Cu ingredients was the best in the catalyst inserted 20 mol-% Ti into the framework of SBA-15, and CO oxidation activity was also improved.