DOI QR코드

DOI QR Code

Synthesis of Periodic Mesoporous Organosilica by Microwave Heating

  • Yoon, Sang-Soon (Department of Chemical Engineering, Inha University) ;
  • Son, Won-Jin (Department of Chemical Engineering, Inha University) ;
  • Biswas, Kalidas (Department of Chemical Engineering, Inha University) ;
  • Ahn, Wha-Seung (Department of Chemical Engineering, Inha University)
  • Published : 2008.03.20

Abstract

A periodic mesoporous organosilica material was synthesized by microwave heating (PMO-M) using 1,2-bis(trimethoxysilyl)ethane as a precursor in a cationic surfactant solution, and textural properties were compared with those of the product produced by conventional convection heating (PMO-C). These synthesized materials were characterized using XRD, TEM/SEM, N2 adsorption isotherm, 29Si and 13C NMR, and TGA, which confirmed their good structural orders and clear arrangements of uniform 3D-channels. Synthesis time was reduced from 21 h in PMO-C to 2-4 h in PMO-M. PMO-M was made of spherical particles of 1.5-2.2 m m size, whereas PMO-C was made of decaoctahedron-shaped particles of ca. 8.0 m m size. Effect of synthesis temperature, time, and heating mode on the PMO particle morphology was examined. The particle size of PMO-M could be controlled by changing the heating rate by adjusting microwave power level. PMO-M demonstrated improved separation of selected organic compounds compared to PMO-C in a reversed phase HPLC experiment. Ti-grafted PMO-M also resulted in higher conversion in liquid phase cyclohexene epoxidation than by Ti-PMO-C.

Keywords

References

  1. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710 https://doi.org/10.1038/359710a0
  2. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, . J. L. J. Am. Chem. Soc. 1992, 114, 10834 https://doi.org/10.1021/ja00053a020
  3. Lim, M. H.; Blnford, C. F.; Stein, A. J. Am. Chem. Soc. 1997, 119, 4090 https://doi.org/10.1021/ja9638824
  4. Fowler, C. E.; Lebeau, B.; Mann, S. Chem. Commun. 1998, 1825
  5. Baney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Chem. Rev. 1995, 95, 1409 https://doi.org/10.1021/cr00037a012
  6. Loy, D. A.; Shea, K. J. Chem. Rev. 1995, 95, 1431 https://doi.org/10.1021/cr00037a013
  7. Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611 https://doi.org/10.1021/ja9916658
  8. Guan, S.; Inagaki, S.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 5660 https://doi.org/10.1021/ja000839e
  9. Kruk, M.; Jaroniec, M.; Guan, S.; Inagaki, S. J. Phys. Chem. B 2001, 105, 681 https://doi.org/10.1021/jp003133f
  10. Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999, 402, 867 https://doi.org/10.1038/47229
  11. Yoshina-Ishii, C.; Asefa, T.; Coombs, N.; MacLachlan, M. J.; Ozin, G. A. Chem. Commun. 1999, 2539
  12. Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O. Nature 2002, 416, 304 https://doi.org/10.1038/416304a
  13. Kapoor, M. P.; Yang, Q.; Inagaki, S. J. Am. Chem. Soc. 2002, 124, 15176 https://doi.org/10.1021/ja0290678
  14. Kapoor, M. P.; Inagaki, S. Chem. Mater. 2002, 14, 3509 https://doi.org/10.1021/cm020345b
  15. Park, S. S.; An, B.; Ha, C. S. Micropor. Mesopor. Mater. 2008, in press
  16. Muth, O.; Schellbach, C.; Fröba, M. Chem. Commun. 2001, 2032
  17. Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A. Chem. Mater. 1999, 11, 3302 https://doi.org/10.1021/cm9903935
  18. Zhu, H.; Jones, D. J.; Zajac, J.; Dutartre, R.; Rhomari, M.; Roziere, J. Chem. Mater. 2002, 14, 4886 https://doi.org/10.1021/cm011742+
  19. Zhao, J. P.; Cundy, C.; Dwyer, J. Stud. Surf. Sci. Catal. 1997, 105, 181 https://doi.org/10.1016/S0167-2991(97)80554-X
  20. Afrat, A.; Jasen, J. C.; Ebaid, A. R.; Van Bekkum, H. Zeolites 1997, 3, 162
  21. Meng, X.; Xu, W.; Pang, W. Chin. Chem. Lett. 1992, 3, 69
  22. Kang, K. K.; Park, C. H.; Ahn, W. S. Catal. Lett. 1999, 59, 45 https://doi.org/10.1023/A:1019004101326
  23. Jiang, N.; Choi, K. M.; Han, S. C.; Koo, J. B.; Park, S. E. Stud. Surf. Sci. Catal. 2007, 165, 901 https://doi.org/10.1016/S0167-2991(07)80464-2
  24. Kim, D. J.; Chung, J. S.; Ahn, W. S.; Kang, G. W.; Cheong, W. J. Chem. Lett. 2004, 33, 422 https://doi.org/10.1246/cl.2004.422

Cited by

  1. Spherical Periodic Mesoporous Organosilicas Bearing Camphorsulfonamide Substructures for HPLC vol.74, pp.7-8, 2011, https://doi.org/10.1007/s10337-011-2114-3
  2. Tailoring nanohybrids and nanocomposites for catalytic applications vol.15, pp.6, 2013, https://doi.org/10.1039/c3gc37141g
  3. Preparation of surface-silylated and benzene-bridged Ti-containing mesoporous silica for cyclohexene epoxidation vol.23, pp.4, 2016, https://doi.org/10.1007/s10934-016-0146-7
  4. Effect of preparation conditions of benzene bridged Ti incorporated periodic mesoporous organosilicas on selectivity improvement of cyclohexene epoxidation vol.25, pp.6, 2018, https://doi.org/10.1007/s10934-018-0576-5
  5. Rapid microwave-assisted synthesis of benzene bridged periodic mesoporous organosilicas vol.19, pp.19, 2009, https://doi.org/10.1039/b820792e
  6. Ultrafast Sonochemical Synthesis of Methane and Ethane Bridged Periodic Mesoporous Organosilicas vol.26, pp.2, 2010, https://doi.org/10.1021/la902239m
  7. Optimization of the time and temperature of the microwave-assisted amination of phenylene-PMO vol.5, pp.12, 2008, https://doi.org/10.1039/c4ra12364f