• 제목/요약/키워드: Meso-Technology

검색결과 128건 처리시간 0.022초

미세부품가공을 위한 소형 초고속에어스펀들 개발 (Development of Miniaturized High-Speed Air Spindle for Micro-Meso Components)

  • 이승준;신인동;최수창;김용우;이종렬;이득우
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.334-339
    • /
    • 2010
  • The development of high-speed spindle have been studied extensively for micro machining in advanced industrial countries. The research of miniaturized high-speed air spindle is important part which needs for the micro machining process of high quality. So, This study was to carry out results about design characteristics of miniaturized high-speed air spindle. We had designed 4type turbines and shaft. They were simulated in use the computer simulation programs. We made them as products. They measured RPM (revolutions per minute). As a result of experiments, there was a contrast among 4type Turbines. it reached 384,000rpm in 4.5bar of air pressure. And, We tried to compare the results of measurement whit the results of computer simulation.

A reduced order model for fission gas diffusion in columnar grains

  • D. Pizzocri;M. Di Gennaro;T. Barani;F.A.B. Silva;G. Zullo;S. Lorenzi;A. Cammi
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.3983-3995
    • /
    • 2023
  • In fast reactors, restructuring of the fuel micro-structure driven by high temperature and high temperature gradient can cause the formation of columnar grains. The non-spheroidal shape and the non-uniform temperature field in such columnar grains implies that standard models for fission gas diffusion can not be applied. To tackle this issue, we present a reduced order model for the fission gas diffusion process which is applicable in different geometries and with non-uniform temperature fields, maintaining a computational requirement in line with its application in fuel performance codes. This innovative application of reduced order models as meso-scale tools within fuel performance codes represents a first-of-a-kind achievement that can be extended beyond fission gas behaviour.

Isolation and In vitro and In vivo Antifungal Activity of Phenylacetic acid Produced by Micromonospora aurantiaca Strain JK-1

  • Kim, Hyo-Jin;Hwang, In-Sun;Kim, Beom-Seok;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • 제22권1호
    • /
    • pp.75-89
    • /
    • 2006
  • The actinomycete strain JK-1 that showed strong inhibitory activity against some plant pathogenic fungi and oomycetes was isolated from Jung-bal Mountain in Ko-yang, Korea. The strain JK-1 produced spores singly borne on sporophores and the spores were spherical and 0.9-1.2 11m in diameter. The cell wall of the strain JK-1 contained meso-diaminopimelic acid. The actinomycete strain JK-1 was identified as the genus Micromonospora based on the morphological, physiological, biochemical and chemotaxonomic characteristics. From the 168 rDNA analysis, the strain JK-1 was assigned to M aurantiaca. The antibiotic MA-1 was purified from the culture broth of M aurantiaca JK-1 using various purification procedures, such as Diaion HP20 chromatography, C18 flash column chromatography, silica gel flash column chromatography and Sephadex LH-20 column chromatography. $^{1}H-$, $^{13}C-NMR$ and EI mass spectral analysis of the antibiotic MA-1 revealed that the antibiotic MA-1 is identical to phenylacetic acid. Phenylacetic acid showed in vitro inhibitory effects against fungal and oomycete pathogens Alternaria mali, Botrytis cinerea, Magnaporthe grisea, Phytophthora capsici and yeast Saccharomyces cerevisiae at < 100 $\mug$ $ml^{-1}$. In addition, phenylacetic, acid completely inhibited the growth of Sclerotinia sclerotiorum, Bacillus subtilis, Candida albicans, Xanthomonas campestris pv. vesicatoria at < $\mug$ $ml^{-1}$. Phenylacetic acid strongly inhibited conidial germination and hyphal growth of M grisea and C. orbiculare. Phenylacetic acid showed significantly high levels of inhibitory' effect against rice blast and cucumber anthracnose diseases at 250 $\mug$ $ml^{-1}$. The control efficacies of phenylacetic acid against the two diseases were similar to those of commercial compounds tricyclazole, iprobenfos and chlorothalonil .n the greenhouse.

Photocatalytic Activity of Hierarchical N doped TiO2 Nanostructures

  • Naik, Brundabana;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.669-669
    • /
    • 2013
  • Hierarchical N doped TiO2 nanostructured catalyst with micro, meso and macro porosity have been synthesized by a facile self-formation route using ammonia and titanium isopropoxide precursor. The samples were calcined in different calcination temperature ranging from $300^{\circ}C$ to $800^{\circ}C$ at slow heating rate ($5^{\circ}C$/min) and designated as NHPT-300 to NHPT-800. $TiO_2$ nanostructured catalyst have been characterized by physico-chemical and spectroscopy methods to explore the structural, electronic and optical properties. UV-Vis diffuse reflectance spectra confirmed the red shift and band gap narrowing due to the doping of N species in TiO2 nanoporous catalyst. Hierarchical macro porosity with fibrous channel patterning was observed (confirmed from FESEM) and well preserved even after calcination at $800^{\circ}C$, indicating the thermal stability. BET results showed that micro and mesoporosity was lost after $500^{\circ}C$ calcination. The photocatalytic activity has been evaluated for methanol oxidation to formaldehyde in visible light. The enhanced photocatalytic activity is attributed to combined synergetic effect of N doping for visible light absorption, micro and mesoporosity for increase of effective surface area and light harvestation, and hierarchical macroporous fibrous structure for multiple reflection and effective charge transfer.

  • PDF

Seismic isolation of nuclear power plant based on layered periodic foundation

  • Mi Zhao;Qun Chen;Junqi Zhang;Xiuli Du
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.259-274
    • /
    • 2023
  • In this paper, mechanical properties of periodic foundation made of concrete and rubber are investigated by a parametric study using the finite element method (FEM). Periodic foundation is a special type of seismic isolation foundation used in civil engineering, which is inspired by the meso-scale structure of phononic crystals in solid-state physics. This type of foundation is capable of reducing the seismic wave propagating though the foundation, therefore providing additional protection for the structures. In the FEM analysis, layered periodic foundation is frequently modelled due to its simplicity in numerical modeling. However, the isolation effect of periodic foundation on nuclear power plant has not been fully discussed to the best knowledge of authors. In this work, we construct four numerical models of nuclear power plant with different foundations to investigate the seismic isolation effects of periodic foundations. The results show that the layered periodic foundation can increase the natural period of the nuclear power plant like traditional base isolation systems, which is beneficial to the structures. In addition, the seismic response of the nuclear power plant can also be effectively reduced in both vertical and horizontal directions when the frequencies of the incident waves fall into some specific frequency bandgaps of the periodic foundation. Furthermore, it is demonstrated that the layered periodic foundation can reduce the amplitude of the floor response spectrum, which plays an important role in the protection of the equipment.

An Analytical Framework for a Technological Innovation System: the Case of a Nuclear Power System

  • Lee, Tae Joon;Lee, Young-Joon
    • Asian Journal of Innovation and Policy
    • /
    • 제7권2호
    • /
    • pp.235-286
    • /
    • 2018
  • The aim of paper is to develop an alternative framework for the study of technological innovation systems. In contrast with conventional literature, this analytical framework is designed for entrepreneurs, i.e. actors, at the micro level rather than policy-makers at the meso or macro level. Herein, the entrepreneurial innovation system is conceptually refined by synthesizing knowledge regarding technological innovation and innovation systems. Drawing upon the intrinsic technological identity essential for innovation, the entrepreneurial innovation system is shown to involve three core changes in terms of technology, organization and market, and their couplings within its internal boundary over time. This analytical framework also takes into account the fact that the innovation system is influenced by and copes with the external environment during its evolution. Moreover, the framework of the entrepreneurial innovation system considers the recent trend of sustainable development. The technical and socio-economic characteristics of a nuclear powersystem are studied empirically to articulate an analytical framework that should be very useful for technological innovation in other energy systems by reflecting their unique features.

미세스탬핑 공정에서 블랭크 형상의 영향에 관한 연구 (A Study on the Effect of Blank Shape on the Miniature Stamping)

  • 심현보
    • 소성∙가공
    • /
    • 제15권4호
    • /
    • pp.304-310
    • /
    • 2006
  • Due to a recent growth of the area of MEMS and a trend moving toward smaller scale, a micro manufacturing that is usually related with lithography is now emerging. Differently from traditional manufacturing processes, the micro or miniature manufacturing usually requires expensive sophisticated equipments and its characteristics are of high cost and of low productivity. However, a miniature stamping, which makes small sized product with a thin metal usually in the range of meso-scale, can be realized in a low cost and in a high productivity with relatively inexpensive equipments. For a successful development of miniature stamping, lots of obstacles, including material properties related with formability, have to be overcome. Since the thin metal shows distinctive characteristics, e.g., size effect and statistically scattered material properties, the formability of miniature stamping is not good in general and the possible shape with the miniature stamping is limited relatively simple shapes. Since the optimal blank improves formability and the improved formability can make up for problems of material properties, the possibility of success can be increased. This study is carried out to show the possibility of miniature stamping and to verify the effect of optimal blank for the miniature stamping.

Highly Sensitive and Selective Ethanol Sensors Using Magnesium doped Indium Oxide Hollow Spheres

  • Jo, Young-Moo;Lee, Chul-Soon;Wang, Rui;Park, Joon-Shik;Lee, Jong-Heun
    • 한국세라믹학회지
    • /
    • 제54권4호
    • /
    • pp.303-307
    • /
    • 2017
  • Pure $In_2O_3$, 0.5 and 1.0 wt% Mg doped $In_2O_3$ hollow spheres were synthesized by ultrasonic spray pyrolysis of a solution containing In-, Mg-nitrate and sucrose and their gas sensing characteristics to 5 ppm $C_2H_5OH$, p-xylene, toluene, and HCHO were measured at 250, 300 and $350^{\circ}C$. Although the addition of Mg decreases the specific surface area and the volume of meso-pores, the gas response (resistance ratio) of the 0.5 wt% Mg doped $In_2O_3$ hollow spheres to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ (69.4) was significantly higher than that of the pure $In_2O_3$ hollow spheres (24.4). In addition, the Mg doped $In_2O_3$ hollow spheres showed the highest selectivity to $C_2H_5OH$. This was attributed to the dehydrogenation of $C_2H_5OH$ assisted by basic MgO into reactive $CH_3CHO$ and $H_2$.

전사방식 마이크로광조형을 이용한 배열 형태 미세 구조물 가공 (Fabrication of Microstructure Array using the Projection Microstereolithography System)

  • 최재원;하영명;이석희
    • 한국정밀공학회지
    • /
    • 제24권8호통권197호
    • /
    • pp.138-143
    • /
    • 2007
  • Microstereolithography technology is similar to the conventional stereolithography process and enables to fabricate a complex 3D microstructure. This is divided into scanning and projection type according to aiming at precision and fabrication speed. The scanning MSL fabricates each layer using position control of laser spot on the resin surface, whereas the projection MSL fabricates one layer with one exposure using a mask. In the projection MSL, DMD used to generate dynamic pattern consists of $1024{\times}768$ micromirrors which have $13.68{\mu}m$ per side. The fabrication range and resolution are determined by the field of view of the DMD and the magnification of the projection lens. If using the projection lens with high power, very fine microstructures can be fabricated. In this paper, the projection MSL system adapted to a large surface for array-type fabrication is presented. This system covers the meso range, which is defined as the intermediate range between micro and macro, with a resolution of a few ${\mu}m$. The fabrication of array-type microstructures has been demonstrated to verify the performance of implemented system.

MULTI-SCALE MODELS AND SIMULATIONS OF NUCLEAR FUELS

  • Stan, Marius
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.39-52
    • /
    • 2009
  • Theory-based models and high performance simulations are briefly reviewed starting with atomistic methods, such as Electronic Structure calculations, Molecular Dynamics, and Monte Carlo, continuing with meso-scale methods, such as Dislocation Dynamics and Phase Field, and ending with continuum methods that include Finite Element and Finite Volume. Special attention is paid to relating thermo-mechanical and chemical properties of the fuel to reactor parameters. By inserting atomistic models of point defects into continuum thermo-chemical calculations, a model of oxygen diffusivity in $UO_{2+x}$ is developed and used to predict point defect concentrations, oxygen diffusivity, and fuel stoichiometry at various temperatures and oxygen pressures. The simulations of coupled heat transfer and species diffusion demonstrate that including the dependence of thermal conductivity and density on composition can lead to changes in the calculated centerline temperature and thermal expansion displacements that exceed 5%. A review of advanced nuclear fuel performance codes reveals that the many codes are too dedicated to specific fuel forms and make excessive use of empirical correlations in describing properties of materials. The paper ends with a review of international collaborations and a list of lessons learned that includes the importance of education in creating a large pool of experts to cover all necessary theoretical, experimental, and computational tasks.