• Title/Summary/Keyword: Mesh resolution

Search Result 139, Processing Time 0.022 seconds

Flow solutions around rectangular cylinders: The question of spatial discretization

  • Corsini, Roberto;Angeli, Diego;Stalio, Enrico;Chibbaro, Sergio;Cimarelli, Andrea
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.151-159
    • /
    • 2022
  • The aerodynamics of blunt bodies with separation at the sharp corner of the leading edge and reattachment on the body side are particularly important in civil engineering applications. In recent years, a number of experimental and numerical studies have become available on the aerodynamics of a rectangular cylinder with chord-to-thickness ratio equal to 5 (BARC). Despite the interest in the topic, a widely accepted set of guidelines for grid generation about these blunt bodies is still missing. In this work a new, well resolved Direct Numerical Simulation (DNS) around the BARC body at Re=3000 is presented and its results compared to previous DNSs of the same case but with different numerical approaches and mesh. Despite the simulations use different numerical approaches, mesh and domain dimensions, the main discrepancies are ascribed to the different grid spacings employed. While a more rigorous analysis is envisaged, where the order of accuracy of the schemes are kept the same while grid spacings are varied alternately along each spatial direction, this represents a first attempt in the study of the influence of spatial resolution in the Direct Numerical Simulation of flows around elongated rectangular cylinders with sharp corners.

Development of a Parallel Cell-Based DSMC Method Using Unstructured Meshes (비정렬격자에서 병렬화된 격자중심 직접모사 기법 개발)

  • Kim, Hyeong-Sun;Kim, Min-Gyu;Gwon, O-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • In the present study, a parallel DSCM technique based on a cell-based data structure is developed for the efficient simulation of rarefied gas flows especially od PC clusters. Dynamic load balancing is archieved by decomposing the computational domain into several sub-domains and accounting for the number of particles and the number cells of each domain. Mesh adaptation algorithm is also applied to improve the resolution of the solution and to reduce the grid dependency. It was demonstrated that accurate solutions can be obtained after several levels of mesh adapation starting from a coars initial grid. The method was applied to a two-dimensioanal supersonic leading-edge flow and the axi-symmetric Rothe nozzle flow to validate the efficiency of the present method. It was found that the present method is a very effective tool for the efficient simulation of rarefied gas flow on PC-based parallel machines.

Investigation of Micro-vibration Isolation Performance of SMA Mesh Washer Isolator for Vibration Isolation of X-band Antenna (SMA 메쉬 와셔 진동 절연기를 적용한 X-band 안테나의 미소진동 절연성능 검토)

  • Jeon, Su-Hyeon;Kwon, Sung-Choel;Kim, Dae-Kwan;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.988-995
    • /
    • 2014
  • Two axis gimbal type X-band antenna system has been widely used to effectively transmit the real time image data from the observation satellite to the ground station. The micro-vibration generated by stepping motor actuation and imperfect intermeshed gear configuration of the antenna is one of the sources to degrade the image quality. To guarantee a high quality image of high resolution observation satellite, micro-vibration isolation of X-band antenna is required. In this paper, the X-band antenna vibration isolation system using pseudoelastic SMA(Shape Memory Alloy) mesh washer has been newly suggested. The basic characteristics of the SMA mesh washer isolator proposed in this study has been measured through static load tests and its effectiveness has been demonstrated by the micro-vibration isolation test of the X-band antenna.

Simultaneous Simplification of Multiple Triangle Meshes for Blend Shape (블렌드쉐입을 위한 다수 삼각 메쉬의 동시 단순화 기법)

  • Park, Jung-Ho;Kim, Jongyong;Song, Jonghun;Park, Sanghun;Yoon, Seung-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.75-83
    • /
    • 2019
  • In this paper we present a new technique for simultaneously simplifying N triangule meshes with the same number of vertices and the same connectivities. Applying the existing simplification technique to each of the N triangule mesh creates a simplified mesh with the same number of vertices but different connectivities. These limits make it difficult to construct a simplified blend-shape model in a high-resolution blend-shape model. The technique presented in this paper takes into account the N meshes simultaneously and performs simplification by selecting an edge with minimal removal cost. Thus, the N simplified meshes generated as a result of the simplification retain the same number of vertices and the same connectivities. The efficiency and effectiveness of the proposed technique is demonstrated by applying simultaneous simplification technique to multiple triangle meshes.

3D Clothes Modeling of Virtual Human for Metaverse (메타버스를 위한 가상 휴먼의 3차원 의상 모델링)

  • Kim, Hyun Woo;Kim, Dong Eon;Kim, Yujin;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.638-653
    • /
    • 2022
  • In this paper, we propose the new method of creating 3D virtual-human reflecting the pattern of clothes worn by the person in the high-resolution whole body front image and the body shape data about the person. To get the pattern of clothes, we proceed Instance Segmentation and clothes parsing using Cascade Mask R-CNN. After, we use Pix2Pix to blur the boundaries and estimate the background color and can get UV-Map of 3D clothes mesh proceeding UV-Map base warping. Also, we get the body shape data using SMPL-X and deform the original clothes and body mesh. With UV-Map of clothes and deformed clothes and body mesh, user finally can see the animation of 3D virtual-human reflecting user's appearance by rendering with the state-of-the game engine, i.e. Unreal Engine.

Numerical Simulation of Urban Flash Flood Experiments Using Adaptive Mesh Refinement and Cut Cell Method (적응적 메쉬세분화기법과 분할격자기법을 이용한 극한 도시홍수 실험 모의)

  • An, Hyun-Uk;Yu, Soon-Young
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.511-522
    • /
    • 2011
  • Two-dimensional shallow water model based on the cut cell and the adaptive mesh refinement techniques is presented in this paper. These two mesh generation methods are combined to facilitate modeling of complex geometries. By using dynamically adaptive mesh, the model can achieve high resolution efficiently at the interface where flow changes rapidly. The HLLC Reimann solver and the MUSCL method are employed to calculate advection fluxes with numerical stability and precision. The model was applied to simulate the extreme urban flooding experiments performed by the IMPACT (Investigation of Extreme Flood Processes and Uncertainty) project. Simulation results were in good agreement with observed data, and transient flows as well as the impact of building structures on flood waves were calculated with accuracy. The cut cell method eased the model sensitivity to refinement. It can be concluded that the model is applicable to the urban flood simulation in case the effects of sewer and stormwater drainage system on flooding are relatively small like the dam brake.

Motion-based ROI Extraction with a Standard Angle-of-View from High Resolution Fisheye Image (고해상도 어안렌즈 영상에서 움직임기반의 표준 화각 ROI 검출기법)

  • Ryu, Ar-Chim;Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.395-401
    • /
    • 2020
  • In this paper, a motion-based ROI extraction algorithm from a high resolution fisheye image is proposed for multi-view monitoring systems. Lately fisheye cameras are widely used because of the wide angle-of-view and they basically provide a lens correction functionality as well as various viewing modes. However, since the distortion-free angle of conventional algorithms is quite narrow due to the severe distortion ratio, there are lots of unintentional dead areas and they require much computation time in finding undistorted coordinates. Thus, the proposed algorithm adopts an image decimation and a motion detection methods, that can extract the undistorted ROI image with a standard angle-of-view for the fast and intelligent surveillance system. In addition, a mesh-type ROI is presented to reduce the lens correction time, so that this independent ROI scheme can parallelize and maximize the processor's utilization.

Stereoscopic Video Compositing with a DSLR and Depth Information by Kinect (키넥트 깊이 정보와 DSLR을 이용한 스테레오스코픽 비디오 합성)

  • Kwon, Soon-Chul;Kang, Won-Young;Jeong, Yeong-Hu;Lee, Seung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.920-927
    • /
    • 2013
  • Chroma key technique which composes images by separating an object from its background in specific color has restrictions on color and space. Especially, unlike general chroma key technique, image composition for stereo 3D display requires natural image composition method in 3D space. The thesis attempted to compose images in 3D space using depth keying method which uses high resolution depth information. High resolution depth map was obtained through camera calibration between the DSLR and Kinect sensor. 3D mesh model was created by the high resolution depth information and mapped with RGB color value. Object was converted into point cloud type in 3D space after separating it from its background according to depth information. The image in which 3D virtual background and object are composed obtained and played stereo 3D images using a virtual camera.

Optimization of Material Properties for Coherent Behavior across Multi-resolution Cloth Models

  • Sung, Nak-Jun;Transue, Shane;Kim, Minsang;Choi, Yoo-Joo;Choi, Min-Hyung;Hong, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4072-4089
    • /
    • 2018
  • This paper introduces a scheme for optimizing the material properties of mass-spring systems of different resolutions to provide coherent behavior for reduced level-of-detail in MSS(Mass-Spring System) meshes. The global optimal material coefficients are derived to match the behavior of provided reference mesh. The proposed method also gives us insight into levels of reduction that we can achieve in the systematic behavioral coherency among the different resolution of MSS meshes. We obtain visually acceptable coherent behaviors for cloth models based on our proposed error metric and identify that this method can significantly reduce the resolution levels of simulated objects. In addition, we have confirmed coherent behaviors with different resolutions through various experimental validation tests. We analyzed spring force estimations through triangular Barycentric coordinates based from the reference MSS that uses a Gaussian kernel based distribution. Experimental results show that the displacement difference ratio of the node positions is less than 10% even if the number of nodes of $MSS^{sim}$ decreases by more than 50% compared with $MSS^{ref}$. Therefore, we believe that it can be applied to various fields that are requiring the real-time simulation technology such as VR, AR, surgical simulation, mobile game, and numerous other application domains.

Terrain Geometry from Monocular Image Sequences

  • McKenzie, Alexander;Vendrovsky, Eugene;Noh, Jun-Yong
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.1
    • /
    • pp.98-108
    • /
    • 2008
  • Terrain reconstruction from images is an ill-posed, yet commonly desired Structure from Motion task when compositing visual effects into live-action photography. These surfaces are required for choreography of a scene, casting physically accurate shadows of CG elements, and occlusions. We present a novel framework for generating the geometry of landscapes from extremely noisy point cloud datasets obtained via limited resolution techniques, particularly optical flow based vision algorithms applied to live-action video plates. Our contribution is a new statistical approach to remove erroneous tracks ('outliers') by employing a unique combination of well established techniques-including Gaussian Mixture Models (GMMs) for robust parameter estimation and Radial Basis Functions (REFs) for scattered data interpolation-to exploit the natural constraints of this problem. Our algorithm offsets the tremendously laborious task of modeling these landscapes by hand, automatically generating a visually consistent, camera position dependent, thin-shell surface mesh within seconds for a typical tracking shot.