DOI QR코드

DOI QR Code

Development of a Parallel Cell-Based DSMC Method Using Unstructured Meshes

비정렬격자에서 병렬화된 격자중심 직접모사 기법 개발


Abstract

In the present study, a parallel DSCM technique based on a cell-based data structure is developed for the efficient simulation of rarefied gas flows especially od PC clusters. Dynamic load balancing is archieved by decomposing the computational domain into several sub-domains and accounting for the number of particles and the number cells of each domain. Mesh adaptation algorithm is also applied to improve the resolution of the solution and to reduce the grid dependency. It was demonstrated that accurate solutions can be obtained after several levels of mesh adapation starting from a coars initial grid. The method was applied to a two-dimensioanal supersonic leading-edge flow and the axi-symmetric Rothe nozzle flow to validate the efficiency of the present method. It was found that the present method is a very effective tool for the efficient simulation of rarefied gas flow on PC-based parallel machines.

본 연구에서는 특별히 PC cluster와 같은 병렬 환경에서 효율적인 계산을 수행할 수 있는 격자중심에 기초한 직접모사 기법을 개발하였다. 병렬환경 하에서의 효과적인 계산 수행을 위해서는 전체 계산 영역을 격자수와 각 격자에 할당되는 모사 입자 수를 고려한 부 영역들로 나누어주었다. 또한, 격자 사용의 효율성 증대를 위해서는 매우 성긴 격자에서부터 출발하여 점차적인 격자 적응을 수행하였다. 본 방법은 2차원의 초음속 평판 문제와 축대칭의 Rothe, 노즐 문제에 적용하였다. 그 결과로부터 본 방법을 사용하면 기존의 입자 중심 기법에 비해 매우 효율적으로 희박기체 유동을 해석할 수 있음을 알 수 있었다.

Keywords

References

  1. Bird, G. A., Molecular Gas Dynamics and The Direct Simulation of Gas Flows, Oxford University Press, London, 1994.
  2. Dietrich and Boyd, I. D., "Scalar and Parallel Optimized Implementation of the Direct Simulation Monte Carlo Method", Journal of Computational Physics, Vol. 126, 1996, pp. 328-342. https://doi.org/10.1006/jcph.1996.0141
  3. 김민규, 권오준, 윤성준, “비정렬 삼각형 격자를 사용한 축대칭 직접모사법의 개발”, 한국항공우주학회지, 제 29권, 제 8호, 2001, pp.20-28.
  4. Bird, G. A., "Monte-Carlo Simulation in an Engineering Context," Progress in Astronautics and Aeronautics: Rarefied Gas Dynamics, edited by Fisher, Sam S., Vol. 74, Part I, AIAA, New York, 1981, pp.239-255.
  5. Bird, G. A., "The Perception of Numerical Methods in Rarefied Gas Dynamics," Progress in Astronautics and Aeronautics: Rarefied Gas Dynamics, edited by Muntz, E. P., Weaver, D. P., and Campbell, D. H., Vol. 118, AIAA, Washington, D. C., 1989, pp.211-226.
  6. Borgnakke, C. and Larsen, P. S., "Statistical Collision Models for Monte-Carlo Simulation of Polyatomic Gas Mixtures", Journal of Computational Physics, Vol. 18, 1975, pp.405-420. https://doi.org/10.1016/0021-9991(75)90094-7
  7. Wilmoth ,R. G., "Direct Simulation Monte Carlo Analysis on Parallel Processors," AIAA Paper 89-1666, 1989.
  8. McDonald, J. D., "Particle Simulation in a MultI-processor Environment," AIAA Paper 91-1366, 1991.
  9. Alexander, F. J., Garcia, A. L., and Alder, B. J., "Cell size dependence of transport coefficients in stochastic particle algorithms," Physics of Fluids, Vol. 10, No. 6, 1998, pp. 1540-1542. https://doi.org/10.1063/1.869674
  10. Rothe, D. E., "Electron-Beam Studies of Viscous Flow in Supersonic Nozzle," AIAA Journal, Vol. 9, No. 5, 1971, pp. 804-811. https://doi.org/10.2514/3.6279