• Title/Summary/Keyword: Mesh Center

Search Result 352, Processing Time 0.035 seconds

Numerical Simulation of Dam Break Flow using EFDC Model and Parameter Sensitivity Analysis (EFDC 모형을 이용한 댐 붕괴류 수치모의 및 매개변수 민감도 분석)

  • Jang, Chul;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a series of numerical simulation of dam break flow was conducted using EFDC model, and input conditions including cell size, time step, and turbulent eddy viscosity were considered to analyze parameter sensitivity. In case of coarse mesh layout, the propagated length of the shock wave front was ${\Delta}_x$ longer than that of other mesh layouts, and the velocity results showed jagged edge, which can be cured by applying fine grid mesh. Turbulent eddy viscosity influenced magnitude of the maximum velocity passing through gate up to 20% and the cell Peclet number less than 2.0 ensured no numerical oscillations.

A COMPUTATIONAL STUDY ON PERFORMANCE OF THE DENTAL AIR MOTOR HAND-PIECE USING MOVING MESH METHOD (무빙메시를 이용한 치과 치료기기용 에어모터 핸드피스의 선응에 관한 수치해석적 연구)

  • Sung, Y.J.;Ryu, K.J.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.572-578
    • /
    • 2011
  • The vane type air-motor hand-piece is used widely in the dental services. There are a lot of experimental studies about air-motor but eccentrically off not many numerical studies by using Computational Fluid Dynamics. An air-motor has rotor which rotates at the center of inner housing. The retractable vanes are installed on the rotor. As the rotor of the air-motor rotates, vanes move up and down straightly in the radial direction along the guide. Therefore we have to analyze the unsteady flow field by accurate time dependent marching technique. ANSYS 12.0 CFX is used to analyze unsteady vane-motor flow field Analysis of the changing control volume inside air-motor is implemented by user-defined functions and moving mesh options. Rotational speed of the rotor is approximately 23,000rpm.

  • PDF

Dual repair of traumatic flank hernia using laparoscopic and open approaches: a case report

  • Heo, Yoonjung;Kim, Dong Hun
    • Journal of Trauma and Injury
    • /
    • v.35 no.1
    • /
    • pp.46-50
    • /
    • 2022
  • Traumatic flank hernia (TFH) is rare and prone to recurrence, which makes appropriate treatment challenging. No current guidelines define the optimal timing and method of repair. Meanwhile, recent advances in laparoscopic techniques are reshaping the options for the treatment of TFH. A dual approach that utilizes both laparoscopic and open methods has not previously been reported. Herein, we present the successful treatment of TFH after blunt trauma. A 46-year-old male patient underwent elective herniorrhaphy on hospital day 3, in which laparoscopic implantation of a sublay mesh and extracorporeal implantation of an onlay mesh were performed. Such techniques may be appropriate and result in feasible outcomes in hemodynamically stable patients with large TFH who are strongly suspected of having bowel herniation or concomitant intraperitoneal injuries. Larger studies are needed to assess the long-term results.

Development of 2D inundation model based on adaptive cut cell mesh (K-Flood) (적응적 분할격자 기반 2차원 침수해석모형 K-Flood의 개발)

  • An, Hyunuk;Jeong, Anchul;Kim, Yeonsu;Noh, Joonwoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.853-862
    • /
    • 2018
  • An adaptive cut-cell grid based 2D inundation analysis model, K-Flood, is developed in this study. Cut cell grid method divides a grid into a flow area and a non-flow area depending the characteristics of the flows. With adaptive mesh refinement technique cut cell method can represent complex flow area using relatively small number of cells. In recent years, the urban inundation modeling using high resolution and fine quality data is increasing to achieve more accurate flood analysis or flood forecasting. K-Flood has potential to simulate such complex urban inundation using efficient grid generation technique. A finite volume numerical scheme of second order accuracy for space and time was applied. For verification of K-Flood, 1) shockwave reflex simulation by circular cylinder, 2) urban flood experiment simulation, 3) Malpasset dam collapse simulation are performed and the results are compared with observed data and previous simulation results.

Use of the Full-thickness Free Skin Mesh Graft for Reconstruction of Wound in a Dog (개의 피부손상에 대한 전층망상식피술 증례)

  • Kim, Joo-Ho;Lee, Jong-Il;Lee, Hae-Beom;Heo, Su-Young;So, Kyoung-Min;Ko, Jae-Jin;Chon, Seung-Ki;Lee, Cheol-Ho;Kim, Nam-Soo
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.280-283
    • /
    • 2007
  • A 6-year-old male dog was referred to Animal Medical Center, Chonbuk National University with large distal extremity abrasion wound to the hind limb by automobile accident. The wound was reconstructed with an autogenous, full-thickness skin mesh graft. The graft was harvested from the ventrolateral abdominal wall and transplanted to the wound. The skin mesh graft survived successfully without any noticeable complications. Successful grafting requires asepsis, an adequately prepared recipient bed through the surgical debridement and lavage, proper harvesting and preparation of the graft. Full-thickness skin mesh graft has lesser skin contraction which prevents formation of scar. Meshing the graft provides more graft flexibility over uneven, convex and concave surfaces and allows adequate drainage. The full-thickness skin mesh graft can be successfully used for the treatment of large distal skin wounds in dogs.

A Watermarking Algorithm of 3D Mesh Model Using Spherical Parameterization (구면 파라미터기법을 이용한 3차원 메쉬 모델의 워더마킹 알고리즘)

  • Cui, Ji-Zhe;Kim, Jong-Weon;Choi, Jong-Uk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.149-159
    • /
    • 2008
  • In this paper, we propose a blind watermarking algorithm of 3d mesh model using spherical parameterization. Spherical parameterization is a useful method which is applicable to 3D data processing. Especially, orthogonal coordinate can not analyse the feature of the vertex coordination of the 3D mesh model, but this is possible to analyse and process. In this paper, the centroid center of the 3D model was set to the origin of the spherical coordinate, the orthogonal coordinate system was transformed to the spherical coordinate system, and then the spherical parameterization was applied. The watermark was embedded via addition/modification of the vertex after the feature analysis of the geometrical information and topological information. This algorithm is robust against to the typical geometrical attacks such as translation, scaling and rotation. It is also robust to the mesh reordering, file format change, mesh simplification, and smoothing. In this case, the this algorithm can extract the watermark information about $90{\sim}98%$ from the attacked model. This means it can be applicable to the game, virtual reality and rapid prototyping fields.

An Efficient Skinned-Mesh Process For Mobile 3D Game Engine (모바일 3D 게임 엔진을 위한 효율적인 스킨드 메시 처리)

  • Cho, Jong-Keun
    • Journal of Korea Game Society
    • /
    • v.8 no.4
    • /
    • pp.87-93
    • /
    • 2008
  • The game engine has executed an application after making a mobile 3D game engine which is based on mobile 3D standard graphic API using openGL-ES so far. But, We could not do it satisfactorily that contents compatibility of various types as a various low-level's function is supported. At this point, This study introduce a mobile 3D game engine which is based on mobile 3D standard graphic API using JSR-184 that supporting a high-level's API more than openGL-ES and optimizing to Java environment on J2ME in the center of GSM phone. Also, We shows that the proposed skinned-mesh scheme for enhancing the process speed of a 3D object on JSR-184 engine. The experimental results are shown.

  • PDF

3D Mesh Watermarking Using CEGI (CEGI를 이용한 3D 메쉬 워터마킹)

  • 이석환;김태수;김승진;권기룡;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.472-484
    • /
    • 2004
  • We proposed 3D mesh watermarking algorithm using CEGI distribution. In the proposed algorithm, we divide a 3D mesh of VRML data into 6 patches using distance measure and embed the same watermark bits into the normal vector direction of meshes that mapped into the cells of each patch that have the large magnitude of complex weight of CEGI. The watermark can be extracted based on the known center point of each patch and order information of cell. In an attacked model by affine transformation, we accomplish the realignment process before the extraction of the watermark. Experiment results exhibited the proposed algorithm is robust by extracting watermark bit for geometrical and topological deformed models.

A Study on the Growth Morphology of VGCF Nano-Materials by Acetylene Pyrolysis over Stainless Steel Catalyst - Effect of Reduction Pretreatment and Hydrogen Supply (스테인리스 스틸 촉매 상에서 아세틸렌 분해에 의한 VGCF 나노물질의 성장 형태 연구 - 환원 전처리 및 수소공급 효과)

  • Park, Seok Joo;Lee, Dong Geun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.563-571
    • /
    • 2006
  • Vapor grown carbon fiber (VGCF) nano-materials such as carbon nanotubes and carbon nanofibers were directly grown on the surface of the stainless steel mesh pre-treated by reduction. The reduction of the stainless steel mesh by hydrogen formed small catalytic particles and large particles with bi-modal distribution on the metal surface. When the VGCFs were synthesized on the reduced mesh, carbon nanotubes (CNTs) were dominantly grown from the small catalytic particles without supplying hydrogen gas. However, carbon nanofibers (CNFs) were dominantly grown from the large catalytic particles with hydrogen.

Analysis of the performances of the CFD schemes used for coupling computation

  • Chen, Guangliang;Jiang, Hongwei;Kang, Huilun;Ma, Rui;Li, Lei;Yu, Yang;Li, Xiaochang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2162-2173
    • /
    • 2021
  • In this paper, the coupling of fine-mesh computational fluid dynamics (CFD) thermal-hydraulics (TH) code and neutronics code is achieved using the Ansys Fluent User Defined Function (UDF) for code development, including parallel meshing mapping, data computation, and data transfer. Also, some CFD schemes are designed for mesh mapping and data transfer to guarantee physical conservation in the coupling computation. Because there is no rigorous research that gives robust guidance on the various CFD schemes that must be obtained before the fine-mesh coupling computation, this work presents a quantitative analysis of the CFD meshing and mapping schemes to improve the accuracy of the value and location of key physical prediction. Furthermore, the effect of the sub-pin scale coupling computation is also studied. It is observed that even the pin-resolved coupling computation can also create a large deviation in the maximum value and spatial locations, which also proves the significance of the research on mesh mapping and data transfer for CFD code in a coupling computation.