• 제목/요약/키워드: Mesangial cells

검색결과 54건 처리시간 0.02초

Immortalization of Rat Kidney Glomerular Mesangial Cell and Its Coculture with Glomerular Epithelial Cell

  • Toshinobu Kida;Sachi Fujishima;Masatoshi Matsumra;Wang, Pi-Chao
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권2호
    • /
    • pp.92-98
    • /
    • 2000
  • Mesangial cell has several key roles in thee control of glomerular function: it partocipates in the regulation of glomerular filtration rate, macromolecular clearance, and as both a source and target of numerous hormones and autocrines. Many of these insights into mesangial cell function have been obtained by studying mesangial cells in culture. However, no suitble cell lines have established yet. We here reported the immortalization of rat kidney glomeruar mesangial cell by transfection of E6 and E7 genes of human papillomavirus type 16 (HPV-16) via electroporation and lipofection. The reslts showed that only electroporation could transfect the genes to mesangial cells and the transfected cells maintained the viability for longer than 6 months. Fluorescence microscopic observation showed that cellular contractility and phagocytosis, which are the two main phenotypes of mesangial cells with rat glomerular epithelial cells showed that the growth of mesangial dells was suppressed by epithelial cell, but the growth of epithelisl cells was enhanced by mesangial cells. Moreover, Such results may imply that the glomerular cell-cell interaction plays an important role in the regulation of cell proliferation and differentiation.

  • PDF

연령고본단 및 팔미지황탕이 Rat의 피부섬유아세포, 사구체 메산지움세포 및 혈관내피세포의 노화 지연에 미치는 영향 (Effects of Yeonryunggobondan and Palmijihwangtang on the Population Doubling Number and the Population Time in Rat Fibroblasts, Heart-Endothelial Cells, Mesangial Cells)

  • 박영준;안영민;안세영;두호경
    • 대한한의학회지
    • /
    • 제25권1호
    • /
    • pp.49-59
    • /
    • 2004
  • Objectives: This paper is to investigate what effects Yeonryunggobondan and Palmijihwangtang have on postponing senility in rat fibroblasts, heart-endothelial cells, mesangial cells. Methods: 1. In vitro Yeonryunggobondan and Palmijihwangtang controlled the growth of fibroblasts, heart-endothelial cells, mesangial cells, extended the PDT of them. 2. After feeding rats the drugs for 2 months, the fibroblasts, heart-endothelial cells, mesangial cells were cultured. Results: 1) In fibroblasts the PDN was incresed and the PDT was decreased at passage-1, 2 by Yeonryunggobondan and Palmijihwangtang(p<0.05). 2) In heart-endothelial cells the PDN was incresed and the PDT was decreased at passage 8 by Yeonryunggobondan and Palmijihwangtang(p<0.05). 3) In mesangial cells the PDN was increased and the PDT was decreased at passage 4 by Yeonryunggobondan, the PDN was incresed at passage 4 by Palmijihwangtang(p<0.05). Conclusions: It is concluded that both Yeonryunggobondan and Palmijihwangtang maybe be conductive to protect and delay the senescence of rat fibroblasts, heart-endothelial cells, mesangial cells.

  • PDF

Anti-apoptotic Effect of Bojungbangam-tang Ethanol Extract on Cisplatin-Induced Apoptosis in Rat Mesangial Cells

  • Kim, Nam-Su;Ju, Sung-Min;Kwon, Young-Dal;Shin, Byung-Cheul;Ahn, Kyoo-Seok;Kim, Sung-Hoon;Song, Yung-Sun;Jeon, Byung-Hun
    • 동의생리병리학회지
    • /
    • 제20권6호
    • /
    • pp.1664-1671
    • /
    • 2006
  • Cisplatin is a anti-neoplastic agent which is commonly used for the treatment of solid tumor. Cisplatin activates multiple signal transduction pathways involved in the stress-induced apoptosis in a variety of cell types. Cytotoxicity of cisplatin was detected in rat mesangial cells and the value of $IC_{50}$ is about 20 ${\mu}M$. The treatment of cisplatin to rat mesangial cells showed the apoptotic bodies and DNA fragmentation. The activation of caspase-3, -8, and -9 and proteolytic cleavage of PARP were observed in the rat mesangial cells treated time-dependently with cisplatin. The activation of ERK, p38 and JNK was also observed in the apoptosis induced by cisplatin in rat mesangial cells. The ethanol extract of Bojungbangam-tang (EBJT), a new hergal prescription composed of nine crude drugs, inhibited cisplatin-induced apoptosis in rat mesangial cells. EBJT reduced sub-G1 peak (apoptotic peak) in cisplatin-treated rat mesangial cells. The cisplatin-induced ERK and JNK activation in rat mesangial cells were blocked by EBJT, but EBJT had no effect on p38 activation. Taken together, these results con suggest that EBJT prevents cisplatin-induced apoptotic cell death in rat mesangial cells through inhibition of ERK and JNK activation.

Mesangial 세포에서 고포도당에 의한 IGFs 분비와 PKC 및 산화성 스트레스와의 관련성에 관한 연구 (The relationship between high glucose-induced secretion of IGFs and PKC or oxidative stress in mesangial cells)

  • 박수현;허정선;강창원;한호재
    • 대한수의학회지
    • /
    • 제44권4호
    • /
    • pp.497-505
    • /
    • 2004
  • The proliferation of mesangial cells has been associated with the development of diabetic nephropathy. The cell proliferation has been regulated by diverse growth factors. Among them, insulin like growth factors(IGFs) are also involved in the pathogenesis of diabetic nephropathy. However, it is not yet known about the effect of high glucose on IGF-I and IGF-II secretion and the relationship between high glucose-induced secretion of IGFs and PKC or oxidative stress in the mesangial cells. Thus, we examined the mechanisms by which high glucose regulates secretion of IGFs in mesangial cells. High glucose(25 mM) increased IGF-I and IGF-II secretion. High glucose-induced increase of IGF-I and IGF-II secretion were blocked by taurine($2{\times}10^{-3}$ M), N-acetyl cystein(NAC, $10^{-5}M$), or GSH($10^{-5}M$) (antioxidants), suggesting the role of oxidative stress. High glucose-induced secretion of IGF-I and IGF-II were blocked by H-7, staurosporine, and bisindolylmaleimide I(protein kinase C inhibitors). On the other hand, high glucose also increased lipid peroxide (LPO) formation in a dose dependent manner. In addition, high glucoseinduced stimulation of LPO formation was blocked by PKC inhibitors. These results suggest that PKC is responsible for the increase of oxidative stress in the action of high glucose-induced secretion of IGF-I and IGF-II in mesangial cells. In conclusion, high glucose stimulates IGF-I and IGF-II secretion via PKCoxidative stress signal pathways in mesangial cells.

The Regulation of Insulin-Like Growth (IGF) Factors and IGF Binding Proteins by High Glucose in Mesangial Cells

  • Park Soo-hyun
    • 대한의생명과학회지
    • /
    • 제10권3호
    • /
    • pp.203-210
    • /
    • 2004
  • It has been reported that glomerulosclerosis mediated by the dysfunction of mesangial cells and insulin-like growth factors (IGFs) are associated with the development of diabetic nephropathy. However, it is not yet known the effect of high glucose on IGF-I, -II secretion, IGF-I receptor, and IGFBPs expression in the mesangial cells. Thus, this study was conducted to examine the effect of high glucose on IGF system and its involvement of protein kinase C (PKC) and oxidative stress in mesangial cells. In this study, high glucose (25 mM) increased IGF-I and IGF-II secretion and mRNA expression (P<0.05), which was blocked by PKC inhibitor (staurosporine, 10/sup -8/ M) and antioxidant (N-acetyl cystein, 10/sup -5/ M). High glucose decreased IGFBP-1 and -2 expression but increased IGFBP-5 expression. These alteration of IGFBPs by high glucose was also prevented by staurosporine and NAC, suggesting the role of PKC and oxidative stress. Indeed, high glucose increased PKC activity. Furthermore, high glucose-induced increase of lipid peroxide (LPO) formation was blocked by PKC inhibitors. In conclusion, high glucose alters IGF system via PKC-oxidative pathways in mesangial cells.

  • PDF

Role of Advanced Glycation End Products in TGF-β1 and Fibronectin Expression in Mesangial Cells Cultured under High Glucose

  • HA Hunjoo;KIM Hwa-Jung;LEE Hi Bahl
    • Biomolecules & Therapeutics
    • /
    • 제13권3호
    • /
    • pp.190-197
    • /
    • 2005
  • Advanced glycation end products (AGE) have been implicated in the pathogenesis of diabetic complications including nephropathy. However, the role of AGE in the activation of mesangial cells cultured under high glucose has not been elucidated. The effects of aminoguanidine, which prevents formation of AGE and protein cross-linking, on the synthesis of $TGF-{\beta}1$ and fibronectin by rat mesangial cells cultured under high glucose for 2 weeks were examined and compared with the effects of $N^G$-nitro-L-arginine methyl ester (NAME), a selective nitric oxide synthase inhibitor, because aminoguanidine also inhibits the inducible nitric oxide synthase. Culture of mesangial cells in 30 mM (high) glucose for 2 weeks induced 1.5-fold (ELISA) and 1.9-fold (Western blot analysis) increase in AGE in the culture media compared to 5.6 mM (control) glucose. Northern blot analysis revealed 1.5-fold increase in $TGF-{\beta}1$ and 1.7-fold increase in fibronectin mRNA expression in cells cultured under high glucose compared to control glucose. Increases in mRNA expression were followed by increased protein synthesis. Mink lung epithelial cell growth inhibition assay revealed 1.4-fold increase in $TGF-{\beta}1$ protein in high glucose media compared to control. Fibronectin protein also increased 2.1-fold that of control glucose by Western blot analysis. Administration of aminoguanidine suppressed AGE formation in a dose dependent manner and at the same time suppressed $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells cultured in both control and high glucose. In contrast, NAME did not affect high glucose-induced changes. These findings support a role for AGE in high glucose-induced upregulation of $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells.

Mesangial 세포에서 고포도당에 의한 insulin-like growth factor의 분비조절기전에 관한 연구: cAMP와의 관련성 (The regulatory mechanism of insulin like growth factor secretion by high glucose in mesangial cell: involvement of cAMP)

  • 허정선;강창원;한호재;박수현
    • 대한수의학회지
    • /
    • 제43권4호
    • /
    • pp.563-571
    • /
    • 2003
  • Dysfunction of mesangial cells has been contributed to the onset of diabetic nephropathy. Insulin like growth factors (IGFs) are also implicated in the pathogenesis of diabetic nephropathy. However, it is not yet known about the effect of high glucose on IGF-I and IGF-II secretion in the mesangial cells. Furthermore, the relationship between cAMP and high glucose on the secretion of IGFs was not elucidated. Thus, we examined the mechanisms by which high glucose regulates secretion of IGFs in mesangial cells. Glucose increased IGF-I secretion in a time- (>8 hr) and dose- (>15 mM) dependent manner (p<0.05). Stimulatory effect of high glucose on IGF-I secretion is predominantly observed in 25 mM glucose (high glucose), while 25 mM glucose did not affect cell viability and lactate dehydrogenase release. High glucose also increased IGF-II secretion. The increase of IGF-I and IGF-II secretion is not mediated by osmotic effect, since mannitol and L-glucose did not affect IGF-I and IGF-II secretion. 8-Br-cAMP mimicked high glucose-induced secretion of IGF-I and IGF-II. High glucose-induced stimulation of IGF-I and IGF-II secretion was blocked not by pertussis toxin but by SQ 22536 (adenylate cyclase inhibitor). Rp-cAMP (cAMP antagonist), and myristoylated protein kinase A (PKA) inhibitor amide 14-22 (protein kinase A inhibitor). These results suggest that cAMP/PKA pathways independent of Gi protein may mediate high glucose-induced increase of IGF-I and IGF-II secretion in mesangial cells. Indeed, glucose (>15 mM glucose) increased cAMP formation. In conclusion, high glucose stimulates IGF-I and IGF-II secretion via cAMP/PKA pathway in mesangial cells.

Mesangial 세포에서 고포도당에 의해 유도되는 insulin-like growth factor 분비 촉진작용에 대한 ginsenosides의 차단 효과 (Ginsenosides Protect the High Glucose-induced Stimulation of IGFs in Mesangial Cells)

  • 배춘식;임도선;윤병철;정문진;윤경철;박수현
    • 생명과학회지
    • /
    • 제18권1호
    • /
    • pp.23-29
    • /
    • 2008
  • 인삼은 고전적으로 항당뇨 효과가 있는 것으로 보고되고 있다. Insulin-like growth factor (IGF) 역시 당뇨병성 신증의 발병 초기에 중요한 역할을 하는 것으로 알려져 있다. 이에 본 연구에서는 mesangial 세포에서 고포도당에 의한 IGF 분비에 대한 ginsenoside의 차단 효과 및 이와 관련된 신호전달계를 알아보았다. 결과는 다음과 같다. 고포도당에 의해 증가 되었던 IGF-I 및 IGF-II 분비 촉진 작용은 GTS, PD 및 PT 처리 시 차단되었으며, 세포 성장 촉진작용에서도 같은 효과를 볼 수 있었다. 아울러 고포도당에 의한 산화성 스트레스 종가, GSH 감소, AA 방출 증가 작용 및 $PGE_2$ 합성 증가 작용은 GTS 처리시 현저하게 차단되었으며 PD 및 PT 처리 시 역시 억제 되는 것으로 나타났다. 이상의 결과를 볼 때 mesangial 세포에서 ginsenoside는 산화성 스트레스 및 arachidonic acid 활성 경로를 억제하여 고포도당에 의한 IGFs 분비 작용을 차단하는 것으로 나타났다.

Heat Shock Protein 70이 흰쥐 배양 혈관간 세포에서 관찰되는 $TNF{\alpha}$에 의한 지질과산화에 미치는 보호 효과 (Induction of Heat Shock Protein 70 Inhibits Tumor Necrosis $Factor{\alpha}-induced$ Lipid Peroxidation in Rat Mesangial Cells)

  • 하헌주;박영미;안영수;김경환
    • 대한약리학회지
    • /
    • 제31권3호
    • /
    • pp.323-331
    • /
    • 1995
  • 사구체내 단핵구의 침윤은 면역학적뿐 아니라 비면역학적 사구체 질환 발생 초기에 특징적으로 관찰된다. 단핵구에서 합성되는 대표적인 사이토 카인인 tumor necrosis factor $(TNF){\alpha}$의 합성이 각종 사구체 질환과 관련되어 증가할 뿐 아니라 외부에서 투여한 $TNF{\alpha}$는 사구체 질환의 발생과 진행에 수반된 유사한 증세를 초래한다. 따라서 본 연구에서는 사구체 질환의 표적세포인 혈관간 세포를 이용하여 $TNF{\alpha}$에 의한 세포독성 기전을 검색하고자 하였다. 표준화된 체걸름법을 이용하여 사구체를 분리한후 collagenase로 처리하여 배양하므로써 혈관간 세포의 특징을 지닌 일차 배양 혈관간 세포계를 수립하였다. 세포독성의 지표로서 지질과산화물을 측정했을때, $TNF{\alpha}$는 용량의존적으로 배양 혈관간 세포의 지질과산화를 증가시켰다. 배양혈관간 세포를 $45^{\circ}C$에서 30분간 처리했을 때 heat shock protein 70의 합성이 증가함을 western 분석으로 확인하였을 뿐 아니라, $TNF{\alpha}$에 의한 지질과산화 증가를 효과적으로 억제함을 관찰하였다. 이상의 결과는 $TNF{\alpha}$에 의한 지질과산화 증가가 사구체 질환의 발생이나 진행에 관하여할 수 있음과 고온 전처리에 의해서 heat shock 반응을 초래하므로써 $TNF{\alpha}$에 의한 사구체 손상을 보호할 수 있음을 시사하였다.

  • PDF

당귀작약산, 월비가출탕이 Mesangial Cell 증식과 ICAM-l 및 ${\beta}1-integrin$ 발현에 미치는 영향 (The Effects of Dangguijakyak-san and Wuelbigachul-tang on Mesangial Cell Proliferation and on ICAM-1 and ${\beta}1-integrin$ Expression)

  • 장원만;안세영;두호경
    • 대한한의학회지
    • /
    • 제21권3호
    • /
    • pp.140-148
    • /
    • 2000
  • Objectives : This experiment was conducted to investigate the suppressive effects of Dangguijakyak-san and Wuelbigachul-tang on the expression of ICAM-l and ${\beta}1-integrin$, which mediate cell-cell or cell-matrix interaction, and on the proliferation of mesangial cells. Methods : After in vitro culturing of human mesangial cells with the supernatant which was obtained from the monocytes separated from human blood with Con-A, hydrocortisone, Dangguijakyak-san and Wuelbigachul-tang respectively, we evaluated suppressive effects by measuring the mesangial cell surface enzyme immunoassay or flow cytometry. Results : The results are summarized as follows: 1. Dangguijakyak-san and Wuelbigachul-tang induced marked suppressive effects on the mesangial cell proliferation in the 50% and 25% supernatant concentration stimulating experiments, but hydrocortisone had little effect in these experiments. 2. Dangguijakyak-san and Wuelbigachul-tang induced marked suppressive effects on ICAM-l and ${\beta}1-integrin$ expression, but were less effective than hydrocortisone was. Conclusions : Based on these results, Dangguijakyak-san and Wuelbigachul-tang were found to be effective in the suppression of mesangial cell proliferation and in ICAM-1 and ${\beta}1-integrin$ expression. Further in vitro investigations as conducted above, with the in vivo experiments reflected, may prove that Dangguijakyak-san and Wuelbigachul-tang contribute to the prevention of the glomerular disease.

  • PDF